
EMD
Release alpha

Glenn Tan

Jun 30, 2021





ABOUT

1 Overview 3

2 Frequently Asked Questions 5

3 Future Plans 7

4 Common Concepts 9

5 Download Instructions 13

6 Workcell Builder 17

7 Grasp Planner 39

8 Grasp Execution 75

9 Step-By-Step Tutorials 83

i



ii



EMD, Release alpha

A modular and easy to deploy ROS2 manipulation pipeline that integrates perception elements to establish an end-to-
end pick and place task.

This package was tested with the easy_perception_deployment ROS2 package, but any other perception system that
provides the same ROS2 message in the right topic can work with this package as well.

ABOUT 1

https://github.com/ros-industrial/easy_perception_deployment/


EMD, Release alpha

2 ABOUT



CHAPTER

ONE

OVERVIEW

1.1 Manipulation Pipeline

To preserve the modularity of this package, the manipulation pipeline can be broken down into three main aspects, each
of which can function separately, or together as an end to end pipeline. Each component has its own documentation
and tutorials which are linked in the headers.

1.1.1 Workcell Builder

The Workcell Builder provides an easy to use GUI that allows users to create a representation of their robot task space
to provide robot simulation and to provide the initial state for trajectory planning using frameworks such as Moveit2

3

https://github.com/ros-planning/moveit2


EMD, Release alpha

1.1.2 Grasp Planner

The Grasp Planner subscribes to a topic published by a perception source and outputs an End-effector specific grasp
pose for the end effector using a novel, algorithmic depth-based method. This pose is then published to a ROS2 topic.

1.1.3 Grasp Execution

The Grasp Execution component subscribes to the output published by the Grasp Planner, and uses Moveit2 to develop
a collision free trajectory for the robot to navigate to the required grasp object.

Next step: Download Instructions

4 Chapter 1. Overview

https://github.com/ros-planning/moveit2


CHAPTER

TWO

FREQUENTLY ASKED QUESTIONS

2.1 Workcell Builder

2.1.1 How many Robots are supported in workcell generation?

The current Workcell Builder only supports one robot and one end effector. Future plans may involve supporting
multiple grippers and robots. You can still manually add them in the scene URDF/SRDF.

2.1.2 I have my own object_description folders for existing objects that I want to to
load into the scene. How do I load it into the Workcell Builder?

It is currently not possible to load your own objects into the scene. You need to create it in the GUI. Object loading
features will be included in the future versions of this package.

2.1.3 Can I create my own robot and end effector from the Workcell builder?

The current version of the Workcell builder does not support robot and end effector creation. There are many existing
repositories of robots from major robot vendors such as Universal Robots , ABB Fanuc and end effectors from vendors
such as Robotiq

2.1.4 How do I visualize the workspace during editing using the GUI

Currently, you are not able to visualize the workcell during editing, but rather, using the demo.launch. Future improve-
ments may include a real time visualization of the scene as you change the GUI parameters.

2.2 Grasp Planner

2.2.1 Can I use my own perception system with this package

Yes! While it is highly recommended to use the easy_perception_deployment package for seamless integration, you
can use your own perception system, but make sure to follow the Grasp Planner Input Message Types

5

https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/abb
https://github.com/ros-industrial/fanuc_experimental
https://github.com/ros-industrial/robotiq
https://github.com/ros-industrial/easy_perception_deployment/


EMD, Release alpha

2.2.2 Is it possible to do a side grasp rather than a top down grasp?

Yes, but your camera would then be required to then face the side which you want to grasp.

6 Chapter 2. Frequently Asked Questions



CHAPTER

THREE

FUTURE PLANS

Beyond the alpha release, there are some future plans that will be implemented, depending on the time and resources
available. These are some of the proposed features that may be included in the beta release in the second release.

3.1 Workcell Builder

3.1.1 Loading of custom environment objects

This feature allows users to upload already existing object_description folders available online, rather than having to
always create objects from scratch whenever initializing a scene.

3.1.2 Multi robot support

Future updates will support adding multiple robots into the scene

3.1.3 Real Time Visualization of workcell building

3D visualization of the workcell will be included in the future for users to be able to visualize real time the changes
made while in the GUI.

3.2 Grasp Planner

3.2.1 Cross gripper ranking system

Grasp planner will output the best rank across different gripper types

7



EMD, Release alpha

3.3 Grasp Execution

3.3.1 Eye In Hand support

Grasp Execution will support eye-in-hand configuration (camera attached to robot arm)

8 Chapter 3. Future Plans



CHAPTER

FOUR

COMMON CONCEPTS

The following highlights some common concepts and definitions that might be useful to know for new users

Contents

• Common Concepts

– YAML

– URDF

– SRDF

– Moveit_Config Folders

– Description Folders

– Workcell

– Scenes

– Assets

∗ Robots

∗ End Effectors

∗ Environment Objects

4.1 YAML

YAML (YAML Ain’t Markup Language) is a human-readable format for storing data. This is highly used in this package
to provide a more understandable description of the scene that can be parsed into URDF files and to be reloaded into
the GUI when needed.

More information about the YAML format

9

https://yaml.org/


EMD, Release alpha

4.2 URDF

A URDF (Universal Robot Description Format) file is a file that describes the physical attributes of a robot which will
be used by the package

More information about the URDF format

URDF tutorials

4.3 SRDF

A SRDF (Semantic Robot Description Format) file represents the semantic information of the robot that is not typically
included in the robot URDF file

More information about the SRDF format

4.4 Moveit_Config Folders

This is a folder that is typically generated by the Moveit Setup Assistant which includes many files that are required for
integration with Moveit. This is also where the srdf is stored. These folders are needed for Robots and End Effectors

For a robot named <robot_name> the folder should be named <robot_name>_moveit_config

This is the general struction for a typical moveit_config folder

|--robot_moveit_config
___|--config
______|--fake_controllers.yaml
______|--robot.srdf.xacro
______|.....other files
___|--launch
.....other files

4.5 Description Folders

This folder typically contains the URDF files and the 3D meshes of the object. A description folder is needed not just
for robots and end effectors, but also for other static models in the scene.

An object with the name <object_name> will have the description folder named <object_name>_description.

This is the general struction for a typical description folder

|--object_name_description
___|--urdf
______|--object_name.urdf.xacro
___|--meshes
______|--collision
_________|--object_collision.stl
______|--visual
_________|--object_visual.stl

10 Chapter 4. Common Concepts

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/srdf
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html


EMD, Release alpha

4.6 Workcell

An environment that involves a robot doing tasks

4.7 Scenes

The visual description of a workcell. This term essentially is interchangeable with a Workcell. However, Scenes and
Workcell provides a more all encompassing and understandable term.

4.8 Assets

Represents all visual elements in the scene. This can be split into Robots, End effectors, and Environment Objects

4.8.1 Robots

Any robotic manipulator required for the tasks.

4.8.2 End Effectors

Any end effector attached to the robot. Currently the Grasp Planner only supports a single suction cup gripper and a 2
finger gripper.

4.8.3 Environment Objects

Any other objects that are required in the scene. This includes any tables, boxes, etc that you need added to the scene
as static obstacles.

4.6. Workcell 11



EMD, Release alpha

12 Chapter 4. Common Concepts



CHAPTER

FIVE

DOWNLOAD INSTRUCTIONS

One of the key features of this package it is semi-modular.

ROS projects generally revolve around usage of URDFs to setup an environment of a robotic workcell. Workcell
Builder eases this process by implementing a GUI to generate your desired workcell environment and can be used for
other projects as well!

Grasp Planner and Grasp Execution pipeline work hand in hand to provide a seamless pick and place solution with the
workcell environment created by Workcell Builder.

Note: Grasp Execution requires a robotic workcell to be set up, so do install the whole EMD package if a pick and
place solution is what you’re looking for!

5.1 Installing a perception package

The Easy Manipulation Deployment(EMD) package, specifically Grasp Planner, subscribes to either a topic with Point-
Cloud2 message type OR topics from easy_perception_deployment(EPD) package.

Warning: EMD is dependent on a perception source. If your camera driver does not provide any PointCloud2
message type topics, do check out the EPD package!

Here Grasp Planner Input Message Types is a link for more information to determine which perception input fits best
for your requirements.

5.2 Installing complete Easy Manipulation Deployment suite

5.2.1 Installing Easy Manipulation Deployment dependencies

Moveit2

Follow this link Moveit2 to build Moveit2 from source.

Note: The following Major EMD dependencies do not require to be built from source and will be installed with rosdep
install in the steps below.

13

https://github.com/ros-industrial/easy_perception_deployment/
https://github.com/ros-industrial/easy_perception_deployment/
https://moveit.ros.org/install-moveit2/source/


EMD, Release alpha

Pointcloud Library (PCL) | version: 1.10

The Flexible Collision Library (FCL) | version: 0.5

5.3 Installing only the Workcell Builder

mkdir -p ~/workcell_ws/src

cd ~/workcell_ws/src

git clone https://github.com/ros-industrial/easy_manipulation_deployment.git

mv easy_manipulation_deployment/assets/ .

mv easy_manipulation_deployment/scenes/ .

mv easy_manipulation_deployment/easy_manipulation_deployment/workcell_builder ./easy_
→˓manipulation_deployment

find ./easy_manipulation_deployment -mindepth 1 ! -regex '^./easy_manipulation_
→˓deployment/workcell_builder\(/.*\)?' -delete

cd ~/workcell_ws

source /opt/ros/foxy/setup.bash

rosdep install --from-paths src --ignore-src -yr --rosdistro "${ROS_DISTRO}"

colcon build

source install/setup.bash

5.4 Installing entire Easy Manipulation Deployment package

mkdir -p ~/workcell_ws/src

cd ~/workcell_ws/src

git clone https://github.com/ros-industrial/easy_manipulation_deployment.git

mv easy_manipulation_deployment/assets/ .

mv easy_manipulation_deployment/scenes/ .

mv easy_manipulation_deployment/easy_manipulation_deployment/workcell_builder ./easy_
→˓manipulation_deployment

(continues on next page)

14 Chapter 5. Download Instructions



EMD, Release alpha

(continued from previous page)

cd ~/workcell_ws

source /opt/ros/foxy/setup.bash

rosdep install --from-paths src --ignore-src -yr --rosdistro "${ROS_DISTRO}"

source ~/ws_moveit2/install/setup.bash

colcon build

source install/setup.bash

5.4. Installing entire Easy Manipulation Deployment package 15



EMD, Release alpha

16 Chapter 5. Download Instructions



CHAPTER

SIX

WORKCELL BUILDER

This ROS package provides an easy to use Graphical User Interface for generation of a robotic workcell in RViz which
serves as the first step in the pipeline for a pick and place task

6.1 Workcell Initialization

6.1.1 Folder structure

It is (Highly) recommended to select the same workspace location as the workspace that you lodaded this package in.

From the main window, choose your workspace location. Ensure that the folder selected is the main workspace folder,
i.e catkin_ws or colcon_ws

17



EMD, Release alpha

Once you see the confirmation message that the workcell is loaded, you can then check that folder using your file explorer
and you will see the various folders required to store your assets created. Choose the ROS version and distribution
required and click next to be directed to the scene select window

Folder Structure for Assets

This package requires a standardized folder structure in order for the workcell builder to function well. This serves as
good practice as well for users to store their files in a logical and standardized format. The following is how your folder
should be structured

|--workcell_ws
___|--src
______|--scenes
______|--assets
_________|--robots
____________|--robot_brand
_______________|--robot_model_description
_______________|--robot_model_moveit_config
_________|--end_effectors
____________|--end_effector_brand
_______________|--end_effector_model_description
_______________|--end_effector_model_moveit_config
_________|--environment_objects
____________|--environment_objects_description

The rest of the documentation will highlight how it should be populated.

18 Chapter 6. Workcell Builder



EMD, Release alpha

6.1.2 Generating Moveit Config packages

One key feature of this package is to generate workcell simulations that is compatible with path planning frameworks.
The current version of the workcell builder is designed to be compatible with Moveit, a popular open source motion
planning framework

The moveit configuration packages are required if you want to control your robot with the moveit (and the grasp ex-
ecution component of easy_manipulation_deployment). It is recommended to use the Moveit Setup Assistant it is
recommended to use this to generate the package rather than to do it yourself. Below are some existing moveit_config
folders

UR Robots

ABB Robots

FOR ROS 2

Note that the setup wizard only generates ROS1 packages for now, so if you are using ROS2, please convert the
moveit_config packages to ROS2 before starting.

ROS2 Examples (ur5_moveit_config)

CMakeLists.txt:

cmake_minimum_required(VERSION 3.10.2)
project(ur5_moveit_config)
find_package(ament_cmake REQUIRED)

install(DIRECTORY launch DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY config DESTINATION "share/${PROJECT_NAME}")
ament_package()

package.xml

<?xml version="1.0"?>
<package format="3">
<name>ur5_moveit_config</name>
<version>0.6.4</version>
<description>Resources used for MoveIt! testing</description>

<author email="isucan@willowgarage.edu">Ioan Sucan</author>
<author email="acorn@willowgarage.edu">Acorn Pooley</author>

<maintainer email="dave@dav.ee">Dave Coleman</maintainer>

<license>BSD</license>
<url type="website">http://moveit.ros.org</url>
<url type="bugtracker">https://github.com/ros-planning/moveit-resources/issues</url>
<url type="repository">https://github.com/ros-planning/moveit-resources</url>

<buildtool_depend>ament_cmake</buildtool_depend>

<exec_depend>joint_state_publisher</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>

(continues on next page)

6.1. Workcell Initialization 19

http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html/
https://github.com/ros-industrial/universal_robot/
https://github.com/ros-industrial/abb/


EMD, Release alpha

(continued from previous page)

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

6.1.3 Uploading Relevant Assets

Before generating a scene, you need to make sure you have the assets you need for the scene, especially for the robot
and end effector.

Robots

For increased reusability and ease of visualization, we will create separate folders for separate vendors of Robots. For
example, we will create a folder to store UR robots

$ cd workcell_ws/src/assets/robots

$ mkdir universal_robot

Copy over the moveit_config folder and description folders of the relevant robot models you want to add, ensuring that
the folder names and file names follow the naming Conventions

End Effector

Simlarly for End Effectors, we will create a separate folder for each End Effector Vendor. For example, we will create
a folder to store Robotiq Grippers

$ cd workcell_ws/src/assets/end_effectors

$ mkdir robotiq

Copy over the moveit_config folder and description folders of the relevant end_effector models you want to add, ensur-
ing that the folder names and file names follow the naming Conventions

Environment Objects

For objects that is part of the environment that will be used as static collision objects, it should be stored in the work-
cell_ws/src/assets/environment folder.

*Current version of the GUI does not support loading of existing environment objects. For simple environment
objects, consider creating a copy of the environment objects with the gui instead

Next step: Create A Scene

20 Chapter 6. Workcell Builder



EMD, Release alpha

6.2 Create A Scene

Contents

• Create A Scene

– Adding a Robot into scene

∗ Origin

∗ Robot Base Link

∗ Robot End Effector Link

– Adding an End Effector into scene

∗ Origin

∗ End Effector Link

∗ End Effector Type

– Adding Objects into scene

– Complete Scene

If there are currently no scenes in the “scenes” folder, you need need to add a new scene. Click Add New Scene .

You should be shown the window below, which is the start of scene creation.

6.2. Create A Scene 21



EMD, Release alpha

At this point, there are a few things you can do to populate the scene:

22 Chapter 6. Workcell Builder



EMD, Release alpha

6.2.1 Adding a Robot into scene

To add the robot into the workspace, check the include robot box and the add robot button

Current implementation of this GUI assumes that the Robot is connected to the World link. Manual editing of
the world link can be done through the URDF.

If the error ” No robot is detected in the workcell folder” is seen in the Robot Brand and Robot Model Fields, it means
that the robot description folder and moveit_config is not properly loaded. Refer to ” Uploading Relevant Assets ” in
Workcell Initialization

Otherwise, you will see the window below

In the dropdown menu, select the robot brand and model you would like to include in the work space

Origin

The Origin is the positional and orientation coordinates values of the robot’s base link with respect to the World
Link. Unchecking the box defaults the XYZ and RPY coordinates to 0

Robot Base Link

This is the link of the robot that will be connected to the World Link

Robot End Effector Link

This is the link of the robot that will be connected to the End Effector Base Link

6.2. Create A Scene 23



EMD, Release alpha

6.2.2 Adding an End Effector into scene

To add the end effector into the workspace, check the include end effector box and the add end effector button

Note that the end effector can only be included if the Robot is successfully loaded into the scene.

If the error ” No end effector is detected in the workcell folder” is seen in the End Effector Brand and End Effector
Model Fields, it means that the end effector description folder and moveit_config folder is not properly loaded. Refer
to [Uploading Relevant Assets](#uploading-relevant-assets)

Otherwise, you will see the window below

Origin

The Origin is the positional and orientation coordinates values of the end effector’s base link with respect to the
Robot’s end effector link. Unchecking the box defaults the XYZ and RPY coordinates to 0

End Effector Link

This is the link of the end effector (Usually the base link of the end effector) that will be connected to the Robot’s End
Effector Link (Usually the tip of the robot).

End Effector Type

Currently, the end effector types supported will be only for 2 Finger Grippers and Single Suction Cup. Thus the
attribute options cannot be selected at this moment.

24 Chapter 6. Workcell Builder



EMD, Release alpha

6.2.3 Adding Objects into scene

Create an object

Contents

• Create an object

– Adding Links

∗ Adding Visual Component

∗ Adding Inertial Component

∗ Adding Collision Component

– Adding Joints

∗ Inheritance

∗ Axis

– Origin Explanations

An environment object can be used to create a visual representation of an object in a real robotic workcell, or additionally
to act as a collision object to be taken into account during path planning

An object is required to have minimally one link that will be used to connect to the external world. This link will be
selected under the Object Child Link Field. The type of joint you would want to connect to the world is also specifed
in the field below

6.2. Create A Scene 25



EMD, Release alpha

Adding Links

To find out more about each component, Check out this link that describes the various aspects of a Link

For an object, there should be at least one link that connects this object to the external world

Adding Visual Component

The visual properties of the link. This element specifies the shape of the object (box, cylinder, etc.) for visualization
purposes.

26 Chapter 6. Workcell Builder

http://wiki.ros.org/urdf/XML/link


EMD, Release alpha

Adding Inertial Component

This window allows you to add the inertial properties of the link. This aspect is __optional__ and will default to zero
mass and zero inertia if it is not specified.

Inertia

The 3x3 rotational inertia matrix, represented in the inertia frame. Because the rotational inertia matrix is symmetric,
only 6 above-diagonal elements of this matrix are specified here, using the attributes ixx, ixy, ixz, iyy, iyz, izz.

Origin

Refer to this section

Mass

Mass of the Link

6.2. Create A Scene 27



EMD, Release alpha

Adding Collision Component

This allows you to describe the collision properties of the link. To reduce computation time, simpler collision models
can be used to describe the object compared to the visual components

Adding Joints

To find out more about each component, Check out this link that described the various aspects of a Joint

Note that as of this current implementation, only simple joint attributes are included. Other attributes like
calibration, dynamics, limits, mimic, safety_controller, will be added in future iterations

28 Chapter 6. Workcell Builder

http://wiki.ros.org/urdf/XML/joint


EMD, Release alpha

Inheritance

When creating a joint for two links in an object, note that it is not possible for a link to be a parent of another link that
is higher on the inheritance hierarchy

For example,

Link A is a parent of Link B who is a parent of Link C
A > B > C

Link B is also a parent of Link D
B > D

By inheritance rules, Link D cannot be the parent of Link A (Because Link A is the␣
→˓parent of Link B)

6.2. Create A Scene 29



EMD, Release alpha

Axis

Represents the joint axis specified in the joint frame. Note that this field is disabled for fixed and floating joints.

Origin Explanations

Note that there are many different origin sources for the Visual, Collision, Inertia and Joint aspects of the object. For
each aspect of the link, all three (visual, collision and inertia) origins will be taken with respect to the reference frame
of the link.

To find out where this reference frame is, we need to look at the joint origin . The following example shows, generally,
how the joint origin relates to the link origin.

This configuration shows a link connected to the base_link with a joint origin of 0,0,0 and the visual mesh of
link has an origin of 0,0,1. As you can see, link’s tf is at the 0,0,0 of base_link, while the visual component of
link is at 0,0,1 from the tf of link

30 Chapter 6. Workcell Builder



EMD, Release alpha

In this configuration however, shows a joint origin of 0,0,1 and the visual mesh of link has an origin of 0,0,0. As
you can see, link’s tf is at the 0,0,1 of base_link, while the visual component of link is at 0,0,0 from the tf of
link

6.2.4 Complete Scene

Before you exit the Scene, ensure that a scene name is entered then click the OK button. You should be redirected back
to the scene select window

Next step: Generate Files and Folders

6.2. Create A Scene 31



EMD, Release alpha

6.3 Generate Files and Folders

The next step after creating a scene is to generate the relevant files and folders required to create the simulations

6.3.1 Generating yaml files

To generate this scene, click on the “Generate yaml for scene” button. An environment.yaml yaml file will be created
in the src/scenes/<scene_name> folder

32 Chapter 6. Workcell Builder



EMD, Release alpha

This file is an easy to read textual representation of the scene. This file is important and required to properly generate
the workcell. This is also important for reloading a scene into the GUI for editing. It is possible to do these changes via
the YAML file directly rather than the GUI. However, do note that errors may arise if you do not follow the proper
YAML format.

Once succesful, the Generate Files from yaml will be available

6.3. Generate Files and Folders 33



EMD, Release alpha

6.3.2 Other Files (General)

Click the Generate Files from yaml button to generate the actual required components to build the simulation

The following components will be generated through this button:

Environment Object Packages

The environment objects that were created in the GUI will now have its URDF Xacros and folders generated in the
assets/environment_objects/<object_name>_description folder. This folder will be referenced in the envi-
ronment urdf

environment.urdf.xacro

This file is located in the scenes/<scene_name>/urdf/ folder. This is the main urdf file that combines all the different
elements of the workcell and will be the main file that launch files will reference to when launching files.

arm_hand.srdf.xacro

This file is located in the scenes/<scene_name>/urdf/ folder. This is the srdf file that combines the robot arm and
end effector and contains information such as ignoring link collisions , and will be referenced in launch files.

6.3.3 Other Files (ROS1)

<will be edited later>

1. The launch file for simulation

2. The move_group.launch file

3. The planning_context.launch

34 Chapter 6. Workcell Builder



EMD, Release alpha

6.3.4 Other Files (ROS2)

demo.launch.py

This file is located in the scenes/<scene_name>/launch/ folder. This file serves as a demo launch file that launches an
example RVIZ simulation of the workspace. Note that this launch file does not incorporate Moveit2 Components. To
find out how to do so, check out grasp_execution_demo

Once done, you will see the following screen. You can then exit the GUI

Next Steps: Run workcell demo

6.4 Run workcell demo

To run the demo simulation for the scene you just generated, do the following:

6.4.1 ROS1

$ source /opt/ros/melodic/setup.bash

$ catkin build

$ source devel/setup.bash

$ roslaunch <scene_name> demo.launch

6.4. Run workcell demo 35



EMD, Release alpha

6.4.2 ROS2

In a new terminal, navigate to your workcell_ws

$ source /opt/ros/foxy/setup.bash

$ colcon build

$ source install/setup.bash

$ ros2 launch <scene_name> demo.launch.py

Rviz will then be launched and you should see your scene displayed. To integrate this scene with Moveit2, check out
grasp_execution_demo

6.5 Editing Existing Scene

If you want to edit the existing scene, there are multiple ways you can do so. The first way is to directly edit the
environment.yaml file for minor changes. Do note that you need to follow the YAML format for editing files, if
not errors will be thrown.

6.5.1 Loading YAML file into GUI

To load a yaml file into the GUI, you need to ensure that the scene folder is located in the work-
cell_ws/src/scenes/<scene_name>/ folder. You also need to make sure you have the environment.yaml file in the
workcell_ws/src/scenes/<scene_name>/ folder as well, if not the GUi will not be able to load the files to edit.

If the scene can be found, it will be available to be clicked to be edited.

Ensure that after you edit the scene, follow the rest of the steps in ref:Generate Files and Folders to re-generate the
required files.

36 Chapter 6. Workcell Builder



EMD, Release alpha

6.6 Conventions

6.6.1 Naming Conventions

Following a standardized naming convention is highly recommended to avoid any issues with generating the workspace.

Description folders

Any folder that provides a visual representation of each object in scene should be named <name> _description

The current exception to this rule is the description folder for universal robots, which␣
→˓is currently stored as a folder named ur_description that encapsulates all the␣
→˓current robot models

URDF folders

If the folder contains URDF files for description, it should be in a xacro format stored in the urdf folder, and named:

Robot <robot_model>.urdf.xacro

End effector <end_effector_model> _gripper.urdf.xacro

Environment objects <object_name>.urdf.xacro

moveit_config folder

All end effectors and robots should come with a moveit_config folder named <name> _moveit_config and should be
located in the same directory as your robot/end effector description folders.

This folder should be generated using the Moveit Setup Wizard. However, the package generated is currently in ROS1,
hence you must make sure that the package is converted into a ROS2 package if your workcell is run in ROS2

6.6. Conventions 37



EMD, Release alpha

38 Chapter 6. Workcell Builder



CHAPTER

SEVEN

GRASP PLANNER

7.1 Overview

The Easy Manipulation Deployment Grasp Planner is an Algorithmic Based Point Cloud Grasp Planner that provides
a 4 DOF Grasp Pose for both Multifinger End Effectors and Suction Array End Effectors.

7.1.1 Benefits of EMD Grasp Planner

The Grasp Planner aims to eliminate the following issues that users would face when deploying Machine Learning
based Grasp Planners:

1. Long training times and tedious Dataset acquisition and labelling

Current datasets available such as the Cornell Grasping Dataset and Jacquard Grasping Dataset generally account for
two finger grippers and is training on general objects. For custom use cases, datasets need to be generated and hand
labelled which requires huge amount of time and manual labour. Semantic description of multifinger grippers and
suction arrays may be hard to determine as well.

The Grasp Planner presented in this ROS2 package requires zero datasets and training, and supports multifingered
parallel grippers as well as suction cup arrays.

2. Lack of On-The-Fly End Effector Switching

In high mix, low volume pick-and-place scenarios, different end effectors may be needed for different types of objects.
Changing of end effectors would then mean that the user would need to collect a whole new dataset, relabel and retrain
the dataset and models before use.

39

https://www.cs.cornell.edu/home/llee/data/
https://jacquard.liris.cnrs.fr/


EMD, Release alpha

The Grasp Planner presented in this ROS2 package allows for on-the-fly end effector switching through a simple con-
figuration file that is highly customizable and understandable.

7.2 Before running the Grasp Planner

Recommended information to read before running the Grasp Planner

7.2.1 Grasp Planning Methodology

Grasp planning methodologies

The current grasp planner supports two main types of end effectors:

Multifinger Linear End Effectors

Defined by parallel actuation of fingers towards the center of the end effectors

Grasp Planner Methodology (Finger)

WIP, Come back soon!

Suction Cup Array End Effectors

Defined by suction cups arranged in a 2D plane

Grasp Planner Methodology (Suction)

WIP, Come back soon!

7.2.2 Grasp Planner Configuration File

The grasp planner aims to be highly customizable, and this customization is done using the configuration file, that is
typically stored in the config folder of your package. The YAML format is used for this file for better understanding
and readability.

Due to the huge number of parameters that can be tweaked, the parameters can be divided into the following subgroups,
where explanation of each parameter will be provided

40 Chapter 7. Grasp Planner



EMD, Release alpha

Grasp Planner General Parameters

The parameters described here are the general configuration components for both finger and suction end effectors. Most
of the parameters here are used for either point cloud processing or ROS2 component definitions.

grasp_planning_node:
ros__parameters:
grasp_output_service: "grasp_requests"
easy_perception_deployment:
epd_enabled: false
tracking_enabled: false
epd_topic: "/processor/epd_localize_output"

camera_parameters:
point_cloud_topic: "/camera/pointcloud"
camera_frame: "camera_color_optical_frame"

point_cloud_params:
passthrough_filter_limits_x: [-0.50, 0.50]
passthrough_filter_limits_y: [-0.15, 0.40]
passthrough_filter_limits_z: [0.01, 0.70]
segmentation_max_iterations: 50
segmentation_distance_threshold: 0.01
cluster_tolerance: 0.01
min_cluster_size: 750
cloud_normal_radius: 0.03
fcl_voxel_size: 0.02

end_effectors:
end_effector_names: [finger_gripper_1, suction_gripper_1]
finger_gripper_1:
....

suction_gripper_1:
.....

visualization_params:
point_cloud_visualization: true

Parameter Descriptions

grasp_output_service

Description ROS2 service name for the grasp execution component
Type string

Details of the GraspRequest Service can be found here: Grasp Planner Output Message Types

It is recommended to use the EMD Grasp Execution component. If you do so, keep set grasp_output_service as
"grasp_requests"

7.2. Before running the Grasp Planner 41



EMD, Release alpha

easy_perception_deployment

Grasp Planner General Parameters (EPD)

The parameters described here are the configuration components related to the easy_perception_deployment ROS2
Package

grasp_planning_node:
ros__parameters:
.....
easy_perception_deployment:
epd_enabled: false
tracking_enabled: false
epd_topic: "/processor/epd_localize_output"

easy_perception_deployment.epd_enabled

Description Enables the use of the EPD workflow
Type bool

if true, EPD Workflow is triggered

if false, Direct Camera Workflow is triggered

Details of the different workflows can be found here: Grasp Planner Input Message Types

easy_perception_deployment.tracking_enabled

Note: This parameter will only be used if epd_enabled is set to true

Description Enables the use of EPD Precision Level 3 Object Tracking
Type bool

if true, EPD Precision Level 3, Object Tracking will be taken as input.

if false, EPD Precision Level 2, Object Localization will be taken as input.

To understand more about the different precision levels, visit the easy_perception_deployment documentation

To find out more about the Precision Level ROS2 message differences: Grasp Planner Input Message Types

42 Chapter 7. Grasp Planner

https://github.com/ros-industrial/easy_perception_deployment/
https://easy-perception-deployment.readthedocs.io/en/latest/


EMD, Release alpha

easy_perception_deployment.epd_topic

Note: This parameter will only be used if epd_enabled is set to true

Description Topic name of output from the easy_perception_deployment package
Type string

If your tracking_enabled was set to true , The default value of epd_topic should be "/processor/
epd_tracking_output"

If your tracking_enabled was set to false , The default value of epd_topic should be "/processor/
epd_localize_output"

camera_parameters

Grasp Planner General Parameters (Camera)

Parameters that define the camera parameters. May vary depending on the type of camera used.

grasp_planning_node:
ros__parameters:
.....
camera_parameters:
point_cloud_topic: "/camera/pointcloud"
camera_frame: "camera_color_optical_frame"

camera_parameters.point_cloud_topic

point_cloud_topic: "/camera/pointcloud"

Description Topic published by the camera using the PointCloud2 message type
Type string

camera_parameters.camera_frame

camera_frame: "camera_color_optical_frame"

Description Tf reference frame which the point cloud is referenced from.
Type string

Note: The camera_frame value may be different depending on the definition of the URDF. In order to determine
what the frame is:

1. Run the ROS2 package for your camera

7.2. Before running the Grasp Planner 43

https://github.com/ros-industrial/easy_perception_deployment/
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html


EMD, Release alpha

2. Use ros2 topic echo command to look at the message published by the camera. Typically if the message type
has a sub-message of Header type, refer to the frame_id portion.

point_cloud_params

Grasp Planner General Parameters (Point Cloud)

Parameters that define the Point Cloud parameters used for point cloud processing

grasp_planning_node:
ros__parameters:
.....
point_cloud_params:
passthrough_filter_limits_x: [-0.50, 0.50]
passthrough_filter_limits_y: [-0.15, 0.40]
passthrough_filter_limits_z: [0.01, 0.70]
segmentation_max_iterations: 50
segmentation_distance_threshold: 0.01
cluster_tolerance: 0.01
min_cluster_size: 750
cloud_normal_radius: 0.03
fcl_voxel_size: 0.02
octomap_resolution: 0.01

Passthrough Filtering Parameters

In order to reduce point cloud processing and iteration times, the Point Cloud Library’s implementation of the
passthrough filter function is used to crop out useful parts of the pointcloud in question. This is done through setting
filter limits in the X, Y and Z axes which act as the range within which points in the point cloud will be kept.

Pointcloud before filtering Pointcloud after filtering

As shown above, unnecessary information on the right side of the pointcloud was removed. Limits can be set even
tighter in order to crop out more of the work surface.

44 Chapter 7. Grasp Planner

http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Header.html


EMD, Release alpha

Warning: Ensure that an appropriate passthrough filter limit is chosen for the X, Y and Z axes. You might end up
cropping out useful information if the limits are too tight.

More information can be found in the Passthrough Filter Tutorials

point_cloud_params.passthrough_filter_limits_x

passthrough_filter_limits_x: [-0.50, 0.50]

Description Lower and Upper Passthrough Filter limits in the X-Axis
Type double array

Warning: The tighter the limits, the faster the point cloud will be processed, but you run the risk of croppping out
important information

The wider the limits, the slower the point cloud, but you will not crop out important information.

point_cloud_params.passthrough_filter_limits_y

passthrough_filter_limits_y: [-0.15, 0.40]

Description Lower and Upper Passthrough Filter limits in the Y-Axis
Type double array

Warning: The tighter the limits, the faster the point cloud will be processed, but you run the risk of croppping out
important information

The wider the limits, the slower the point cloud, but you will not crop out important information.

7.2. Before running the Grasp Planner 45

https://pointclouds.org/documentation/tutorials/passthrough.html


EMD, Release alpha

point_cloud_params.passthrough_filter_limits_z

passthrough_filter_limits_z: [0.01, 0.70]

Description Lower and Upper Passthrough Filter limits in the Z-Axis
Type double array

Warning: The tighter the limits, the faster the point cloud will be processed, but you run the risk of croppping out
important information.

The wider the limits, the slower the point cloud, but you will not crop out important information.

Plane Segmentation Parameters

For Object extraction, the Grasp Planner will first remove the set of points in the point cloud representing the surface on
which the objects are placed. This is done using the Point Cloud Library’s Plane Segementation functions, specifically
SAmple Consensus (SAC) methods

point_cloud_params.segmentation_max_iterations

segmentation_max_iterations: 50

Description Set the Maximum number of iterations for SAC methods
Type Int

Warning: The higher the number, the better the result, but longer times will be taken The lower the number, the
less accurate the result, but shorter time will be taken

point_cloud_params.segmentation_distance_threshold

segmentation_distance_threshold: 0.01

Description Determines how close a point must be to the object in order to be considered an inlier
Type Double

Warning: A higher number ensures that more points will be clustered with the object cluster, but you run the risk
of including points on the table as part of the object

46 Chapter 7. Grasp Planner



EMD, Release alpha

Warning: A lower number ensures that only objects really close to the cluster is included inside, but you may run
the risk of missing out some points on the surface

Object Segmentation Parameters

After the plane has been removed from the point cloud input, the assumption is made that the rest of the pointcloud
represents the pick objects (Unless using the EPD workflow, more on that here: Grasp Planner Input Message Types).
The remaining Point Cloud will then be split into clusters using Euclidean Cluster Extraction provided by the Point
Cloud Library, each cluster representing a grasp object

point_cloud_params.cluster_tolerance

cluster_tolerance: 0.01

Description Get the spatial cluster tolerance as a measure in the L2 Euclidean space.
Type Double

7.2. Before running the Grasp Planner 47

https://pointclouds.org/documentation/classpcl_1_1_euclidean_cluster_extraction.html#a7b723a37211039ad47f10b85d72f3509/


EMD, Release alpha

point_cloud_params.min_cluster_size

min_cluster_size: 750

Description For Euclidean cluster extraction. Determine the minimum number of points to be considered
a cluster.

Type Int

Warning: If it is set too high, small objects may be clustered together to satisfy the minimum cluster size.

If set too small,certain objects might be split into multiple clusters if the point cloud is not dense enough

Normals Estimation Parameters

For both finger and suction gripper grasp planning, we take into account the surface of the object as well, which involves
understanding the curvature of the surfaces, which requires estmation of point normals for each point on the surface of
the object, which we will use the Point Cloud Library to do so.

More information on the normal estimation for PCL can be found here

point_cloud_params.cloud_normal_radius

cloud_normal_radius: 0.03

Description The radius of points around each point to determine the normal estimation.
Type Double

Warning: If the radius value is too big, you run the risk of including adjacent surfaces around that point, which
distorts the estimated point features

FCL Collision Object Parameters

In order to account for collision between end effector and the grasp area/grasp object, we use the Flexible Collision
Library (FCL) as a method to generate collision objects for both grasp samples and grasp area.

This is done by first converting the point cloud to an octomap, then to an FCL collision object. In order to speed up
conversion time, we first downsample the pointcloud before conversion

48 Chapter 7. Grasp Planner

https://pointclouds.org/documentation/tutorials/normal_estimation.html/
https://github.com/flexible-collision-library/fcl
https://github.com/flexible-collision-library/fcl
https://pcl.readthedocs.io/en/latest/voxel_grid.html


EMD, Release alpha

point_cloud_params.fcl_voxel_size

fcl_voxel_size: 0.02

Description Size of resulting voxels after downsampling of pointclouds.
Type Double

Warning: If it is set too large, collision object conversion will be faster, but certain features may be lost during
downsampling.

If set too small, collision object conversion will be longer, but the collision object shapes will more accurately
represent the original point cloud

point_cloud_params.octomap_resolution

octomap_resolution: 0.01

Description Resolution of octomap (Used for conversion to collision object)
Type Double

end_effectors

Grasp Planner General Parameters (End Effectors)

Parameters that define the end effectors involved in grasp planning. Multiple end effectors can be declared in one config
file

grasp_planning_node:
ros__parameters:
....
end_effectors:
end_effector_names: [finger_gripper_1, suction_gripper_1]
finger_gripper_1:
....

suction_gripper_1:
.....

7.2. Before running the Grasp Planner 49



EMD, Release alpha

end_effectors.end_effector_names

end_effector_names: [finger_gripper_1, suction_gripper_1]

Description The array of names for end effectors used for grasp planning
Type String array

Note: Make sure the names here matches the name of the end effector in corresponding end effector parameters.

visualization_params

Grasp Planner General Parameters (Visualization)

The parameters described here are the configuration components related to grasp visualization

grasp_planning_node:
ros__parameters:
.....
visualization_params:
point_cloud_visualization: true

visualization_params.point_cloud_visualization

point_cloud_visualization: true

Description Provides 3D visualization of the grasp samples using PCL Viusalizer
Type Bool

Warning: If you set this parameter to true, the PCL Visualizer will be spun, and your grasp plans will be
displayed. this is a blocking process, so your grasp plans will not be published until you exit the Visualizer. Thus
it is recommended to leave this as false

To move to the next grasp sample, press q on your keyboard with the Visualizer window selected to move to the
next grasp sample.

50 Chapter 7. Grasp Planner



EMD, Release alpha

Grasp Planner Finger Parameters

grasp_planning_node:
ros__parameters:
...
end_effectors:
end_effector_names: [finger_gripper_1, suction_gripper_1]
finger_gripper_1:
type: finger
num_fingers_side_1: 1
num_fingers_side_2: 1
distance_between_fingers_1: 0.0
distance_between_fingers_2: 0.0
finger_thickness: 0.02
gripper_stroke: 0.105
gripper_coordinate_system:
grasp_stroke_direction: "x"
grasp_stroke_normal_direction: "y"
grasp_approach_direction: "z"

grasp_planning_params:
grasp_plane_dist_limit: 0.007
voxel_size: 0.01
grasp_rank_weight_1: 1.5
grasp_rank_weight_2: 1.0
world_x_angle_threshold: 0.5
world_y_angle_threshold: 0.5
world_z_angle_threshold: 0.25

Physical Attributes

Grasp Planner Finger Parameters (Physical Attributes)

The Parameters in this Section specifically defines the physical attributes of the finger gripper. These parameters provide
additional flexibility for grasp planner to support a myriad of finger grippers.

The current grasp planner supports linear finger grippers, Where there are two main sides containing the fingers, and
grasping motions are paralell to the direction of distribution of fingers

finger_gripper_1:
type: finger
num_fingers_side_1: 1
num_fingers_side_2: 1
distance_between_fingers_1: 0.0
distance_between_fingers_2: 0.0
finger_thickness: 0.02
gripper_stroke: 0.105

7.2. Before running the Grasp Planner 51



EMD, Release alpha

<finger_gripper_name>.type

type: finger

Description Describes gripper type
Type String

Warning: Do not change this parameter, leave it as finger

52 Chapter 7. Grasp Planner



EMD, Release alpha

<finger_gripper_name>.num_fingers_side_1

num_cups_length: 1

Description Number of fingers on side 1
Type Int

Warning: Should be at least 1

<finger_gripper_name>.num_fingers_side_2

num_cups_breadth: 1

Description Number of fingers on side 2
Type Int

Warning: Should be at least 1

<finger_gripper_name>.distance_between_fingers_1

distance_between_fingers_1: 0.0

Description Center-to-center finger distance between fingers in side 1
Type Double

Warning: If num_fingers_side_1 is 1, set distance_between_fingers_1 as 0.0

<finger_gripper_name>.distance_between_fingers_2

distance_between_fingers_2: 0.0

Description Center-to-center finger distance between fingers in side 2
Type Double

Warning: If num_fingers_side_2 is 1, set distance_between_fingers_2 as 0.0

7.2. Before running the Grasp Planner 53



EMD, Release alpha

<finger_gripper_name>.finger_thickness

finger_thickness: 0.02

Description Maximum dimension of the finger (dimensions along the axis perpedicular to the approach
direction)

Type Double

Note: We represent each finger as a sphere, which only requires one dimension, hence the largest dimension of the
finger should be provided

<finger_gripper_name>.gripper_stroke

gripper_stroke: 0.105

Description Distance between both sides of the finger gripper
Type Double

Coordinate System Attributes

Grasp Planner Finger Parameters (Coordinate Systems)

The parameters in this section provides user the flexibility to define the coordinate system definition for their gripper.

For grasp_approach_direction axis, it is defined as the direction along which the end effector will travel to ap-
proach the object to grasp it.

For the grasp_stroke_direction axis, it is defined as the direction from one side of the finger gripper to another,
i.e the direction of movement when the finger gripper closes

For the grasp_stroke_normal_direction axis, is defined as the direction perpendicular to both
grasp_stroke_direction and grasp_approach_direction.

For this particular configuration below, assuming the RGB-XYZ convention, the coordinate system is defined as the
following:

gripper_coordinate_system:
grasp_stroke_direction: "x"
grasp_stroke_normal_direction: "y"
grasp_approach_direction: "z"

54 Chapter 7. Grasp Planner



EMD, Release alpha

<finger_gripper_name>.gripper_coordinate_system.grasp_stroke_direction

length_direction: "x"

Description Axes defining the grasp stroke direction
Type String

Warning: Restricted to "x" , "y" or "z"

<finger_gripper_name>.gripper_coordinate_system.grasp_stroke_normal_direction

breadth_direction: "y"

Description Axes defining the grasp stroke normal direction
Type String

Warning: Restricted to "x" , "y" or "z"

7.2. Before running the Grasp Planner 55



EMD, Release alpha

<finger_gripper_name>.gripper_coordinate_system.grasp_approach_direction

grasp_approach_direction: "z"

Description Axes defining the grasp approach direction
Type String

Warning: Restricted to "x" , "y" or "z"

Grasp Planning Attributes

Grasp Planner Finger Parameters (Planning)

These parameters directly affect the grasp planning aspects of the finger gripper.

To find out more about how the grasp is being ranked, go to Grasp Planner Methodology (Finger)

grasp_planning_params:
grasp_plane_dist_limit: 0.007
voxel_size: 0.01
grasp_rank_weight_1: 1.5
grasp_rank_weight_2: 1.0
world_x_angle_threshold: 0.5
world_y_angle_threshold: 0.5
world_z_angle_threshold: 0.25

<finger_gripper_name>.grasp_planning_params.grasp_plane_dist_limit

num_sample_along_axis: 3

Description Determine the distance from the grasp plane which to determine the grasp area
Type Int

Note: The greater the number, the more points included in the grasp area, which increases accuracy, but also increases
grasp planning times.

56 Chapter 7. Grasp Planner



EMD, Release alpha

<finger_gripper_name>.grasp_planning_params.voxel_size

search_resolution: 0.01

Description Determines the voxel size for downsampling of grasp clusters.
Type Double

This parameter determines how much downsampling is done after grasp clusters are determined.

Note: The smaller the voxel size, the less downsampling is done, which means more grasp samples can be generated,
but it means that grasp planning times will increase

<finger_gripper_name>.grasp_planning_params.grasp_rank_weight_1

grasp_rank_weight_1: 1.5

Description Weight for first ranking portion of finger gripper
Type Double

<finger_gripper_name>.grasp_planning_params.grasp_rank_weight_2

grasp_rank_weight_2: 1.0

Description Weight for second ranking portion of finger gripper
Type Double

<finger_gripper_name>.grasp_planning_params.world_x_angle_threshold

Currently not used

<finger_gripper_name>.grasp_planning_params.world_y_angle_threshold

Currently not used

7.2. Before running the Grasp Planner 57



EMD, Release alpha

<finger_gripper_name>.grasp_planning_params.world_z_angle_threshold

Currently not used

Grasp Planner Suction Parameters

grasp_planning_node:
ros__parameters:
...
end_effectors:
end_effector_names: [finger_gripper_1, suction_gripper_1]
suction_gripper_1:
type: suction
num_cups_length: 1
num_cups_breadth: 1
dist_between_cups_length: 0.06
dist_between_cups_breadth: 0.06
cup_radius: 0.005
cup_height: 0.01
gripper_coordinate_system:
length_direction: "x"
breadth_direction: "y"
grasp_approach_direction: "z"

grasp_planning_params:
num_sample_along_axis: 3
search_resolution: 0.01
search_angle_resolution: 4
weights:
curvature: 1.0
grasp_distance_to_center: 1.0
number_contact_points: 1.0

Physical Attributes

Grasp Planner Suction Parameters (Physical Attributes)

The Parameters in this Section specifically defines the physical attributes of the suction gripper. These parameters
provide additional flexibility for grasp planner to support a myriad of suction grippers.

suction_gripper_1:
type: suction
num_cups_length: 1
num_cups_breadth: 1
dist_between_cups_length: 0.06
dist_between_cups_breadth: 0.06
cup_radius: 0.005
cup_height: 0.01

58 Chapter 7. Grasp Planner



EMD, Release alpha

Note: “Length” and “Breadth” elements can be determined by the user, as long as it remains consistent for the whole
file

<suction_gripper_name>.type

type: suction

Description Describes gripper type
Type String

Warning: Do not change this parameter, leave it as suction

<suction_gripper_name>.num_cups_length

num_cups_length: 1

Description Number of cups in the length direction
Type Int

Warning: Should be at least 1

7.2. Before running the Grasp Planner 59



EMD, Release alpha

<suction_gripper_name>.num_cups_breadth

num_cups_breadth: 1

Description Number of cups in the breadth direction
Type Int

Warning: Should be at least 1

<suction_gripper_name>.dist_between_cups_length

dist_between_cups_length

Description Center-to-center distance between in the length direction (m)
Type Double

<suction_gripper_name>.dist_between_cups_breadth

dist_between_cups_breadth

Description Center-to-center distance between in the breadth direction (m)
Type Double

<suction_gripper_name>.cup_radius

cup_radius: 0.005

Description Radius of each suction cup
Type Double

<suction_gripper_name>.cup_height

cup_height: 0.01

Description Height of each suction cup
Type Double

60 Chapter 7. Grasp Planner



EMD, Release alpha

Coordinate System Attributes

Grasp Planner Suction Parameters (Coordinate Systems)

The parameters in this section provides user the flexibility to define the coordinate system definition for their gripper.

For grasp_approach_direction axis, it is defined as the direction along which the end effector will travel to ap-
proach the object to grasp it.

For the length_direction and breadth_direction, these are the perpendicular axes along which the suction
cups are arranged. Which direction is length and breadth can be arbitrarily defined, but should be consistent with the
definition for the parameters in Grasp Planner Suction Parameters (Physical Attributes)

For this particular configuration below, assuming the RGB-XYZ convention, the coordinate system is defined as the
following:

gripper_coordinate_system:
length_direction: "x"
breadth_direction: "y"
grasp_approach_direction: "z"

<suction_gripper_name>.gripper_coordinate_system.length_direction

length_direction: "x"

Description Axes defining the length direction
Type String

Warning: Restricted to "x" , "y" or "z"

7.2. Before running the Grasp Planner 61



EMD, Release alpha

<suction_gripper_name>.gripper_coordinate_system.breadth_direction

breadth_direction: "y"

Description Axes defining the breadth direction
Type String

Warning: Restricted to "x" , "y" or "z"

<suction_gripper_name>.gripper_coordinate_system.grasp_approach_direction

grasp_approach_direction: "z"

Description Axes defining the grasp approach direction
Type String

Warning: Restricted to "x" , "y" or "z"

Grasp Planning Attributes

Grasp Planner Suction Parameters (Planning)

These parameters directly affect the grasp planning aspects of the suction gripper

grasp_planning_params:
num_sample_along_axis: 3
search_resolution: 0.01
search_angle_resolution: 4
weights:
curvature: 1.0
grasp_distance_to_center: 1.0
number_contact_points: 1.0

Grasp sample Generation

These parameter affects the amount of grasp samples generated for each instance of grasp planning

62 Chapter 7. Grasp Planner



EMD, Release alpha

<suction_gripper_name>.grasp_planning_params.num_sample_along_axis

num_sample_along_axis: 3

Description Total number of samples generated along the axis of the object
Type Int

Note: The greater the number, the more samples along the axis will be generated and tested, but the grasp planning
times will increase

7.2. Before running the Grasp Planner 63



EMD, Release alpha

<suction_gripper_name>.grasp_planning_params.search_resolution

search_resolution: 0.01

Description Provides the distance between each generated sample along the axis of the object
Type Double

<suction_gripper_name>.grasp_planning_params.search_angle_resolution

search_angle_resolution: 4

Description Provides the number of rotated grasp samples within an entire rotation about a particular
grasp sample

Type Int

64 Chapter 7. Grasp Planner



EMD, Release alpha

Note: The greater the number, the more rotated samples generated, but the grasp planning times will increase.

Grasp Planning Weights

Parameters here directly contribute to the ranking of each suction grasp sample. Configure each of the weight based
on the user’s particular use case and which attribute is more valued.

Note: Ensure that each weight is a positive value less than or equal to 1.

For default values, users can leave all weights at 1.0

To find out more about how the grasp is being ranked, go to Grasp Planner Methodology (Suction)

<suction_gripper_name>.grasp_planning_params.weights.curvature

curvature: 1.0

Description Weights for the curvature component of the grasp ranking
Type Double

<suction_gripper_name>.grasp_planning_params.weights.grasp_distance_to_center

grasp_distance_to_center: 1.0

Description Weights for the distance to object center component of the grasp ranking
Type Double

<suction_gripper_name>.grasp_planning_params.weights.number_contact_points

number_contact_points: 1.0

Description Weights for the number of contact point component of the grasp ranking
Type Double

7.2. Before running the Grasp Planner 65



EMD, Release alpha

Sample configuration yaml file

If you are unsure of how to begin writing a yaml file, the following is an example of the full configuration of the yaml
file.

grasp_planning_node:
ros__parameters:
grasp_output_topic: "/grasp_tasks"
easy_perception_deployment:
epd_enabled: false
tracking_enabled: false
epd_topic: "/processor/epd_localize_output"

camera_parameters:
point_cloud_topic: "/camera/pointcloud"
camera_frame: "camera_color_optical_frame"

point_cloud_params:
passthrough_filter_limits_x: [-0.50, 0.50]
passthrough_filter_limits_y: [-0.15, 0.40]
passthrough_filter_limits_z: [0.01, 0.70]
segmentation_max_iterations: 50
segmentation_distance_threshold: 0.01
cluster_tolerance: 0.01
min_cluster_size: 750
cloud_normal_radius: 0.03
fcl_voxel_size: 0.02

end_effectors:
end_effector_names: [finger_gripper_1, suction_gripper_1]
finger_gripper_1:
type: finger
num_fingers_side_1: 1
num_fingers_side_2: 1
distance_between_fingers_1: 0.0
distance_between_fingers_2: 0.0
finger_thickness: 0.02
gripper_stroke: 0.105
gripper_coordinate_system:
grasp_stroke_direction: "x"
grasp_stroke_normal_direction: "y"
grasp_approach_direction: "z"

grasp_planning_params:
grasp_plane_dist_limit: 0.007
voxel_size: 0.01
grasp_rank_weight_1: 1.5
grasp_rank_weight_2: 1.0
world_x_angle_threshold: 0.5
world_y_angle_threshold: 0.5
world_z_angle_threshold: 0.25

suction_gripper_1:
type: suction
num_cups_length: 1
num_cups_breadth: 1
dist_between_cups_length: 0.06
dist_between_cups_breadth: 0.06

(continues on next page)

66 Chapter 7. Grasp Planner



EMD, Release alpha

(continued from previous page)

cup_radius: 0.005
cup_height: 0.01
gripper_coordinate_system:
length_direction: "x"
breadth_direction: "y"
grasp_approach_direction: "z"

grasp_planning_params:
num_sample_along_axis: 3
search_resolution: 0.01
search_angle_resolution: 4
weights:
curvature: 1.0
grasp_distance_to_center: 1.0
number_contact_points: 1.0

visualization_params:
point_cloud_visualization: true

7.3 Running the Grasp Planner

7.3.1 Running the Grasp Planner

To properly run the Grasp Planner, there are 3 main components needed for running the grasp planner

Note: Ensure that for these three terminals, the ROS2 distributions are sourced, and the workspace is built and sourced
as well

1. Perception source

Perception Source can be provided via Direct Camera Input, or via the Easy Perception Deployment ROS2
package.

2. Package Publishing the TF of the camera frame

The Grasp Planner uses a TF2 Message Filter that waits until the camera frame is published before triggering the
planning itself, thus ensure that whatever package you are using is publishing the tf of the camera frame. You
can configure the camera frame name directly in the grasp planner configuration file. More can be found here:
Grasp Planner General Parameters (Camera)

The EMD Grasp Execution Component provides such a tf publisher feature, thus you can use that as well, by
running

ros2 launch grasp_execution grasp_execution.launch.py

3. EMD Grasp Planner

• Copy any of the files found in grasp_planner/example/launch, rename it to
grasp_planner_(end_effector)_launch.py and replace the params_(end_effector).yaml within
the launch file with the name of the .yaml file you have created. More can be found here: Grasp Planner
Configuration File

To run the grasp planner, run the following command

7.3. Running the Grasp Planner 67

http://wiki.ros.org/tf2/Tutorials/Using%20stamped%20datatypes%20with%20tf2%3A%3AMessageFilter


EMD, Release alpha

ros2 launch grasp_planner grasp_planner_(end_effector)_launch.py

The package will then show the following when waiting for the perception topic

[pcl_test_node-1] waiting...

Note: A blank Cloud Viewer window will pop up, but will only be used if the point_cloud_visualization
parameter in the config file is true.

Example Grasp Planning Output:

Finger gripper:

[demo_node-1] [INFO] [1622278539.845614356] [GraspScene]: Using Direct Camera Input....
[demo_node-1] [INFO] [1622278539.847663649] [GraspScene]: waiting....
[demo_node-1] [INFO] [1622278568.222839760] [GraspScene]: Camera Point Cloud Received!
[demo_node-1] [INFO] [1622278568.222866905] [GraspScene]: Processing Point Cloud...
[demo_node-1] [INFO] [1622278568.314758446] [GraspScene]: Applying Passthrough filters
[demo_node-1] [INFO] [1622278568.388353728] [GraspScene]: Removing Statistical Outlier
[demo_node-1] [INFO] [1622278569.016152941] [GraspScene]: Downsampling Point Cloud
[demo_node-1] [INFO] [1622278569.025191278] [GraspScene]: Segmenting plane
[demo_node-1] [INFO] [1622278569.052835633] [GraspScene]: Point cloud successfully␣
→˓processed!
[demo_node-1] [INFO] [1622278574.641794991] [GraspScene]: Extracting Objects from point␣
→˓cloud
[demo_node-1] [INFO] [1622278575.542850053] [GraspScene]: Extracted 1 from point cloud
[demo_node-1] [INFO] [1622278575.542983933] [GraspScene]: Loading finger gripper robotiq_
→˓2f
[demo_node-1] [INFO] [1622278575.543278724] [GraspScene]: All End Effectors Loaded
[demo_node-1] [INFO] [1622278575.723888039] [GraspScene]: Grasp planning time for␣
→˓robotiq_2f 10 [ms]
[demo_node-1] [INFO] [1622278575.723914241] [GraspScene]: 19 Grasp Samples have been␣
→˓generated.

• 1. Proceed to click on the Cloud Viewer window and it will show the pointcloud and bounding box of the
object (Use the mouse scroll to view the pointclouds better).

• 2. Press the Q key within the Cloud Viewer window to view the results of the grasp_samples

• 3. The terminal running grasp_planner_launch.py will show the ranks of all ranked grasps on the object and
the total number of grasps that can be sampled for the object.

• 4. First grasp visualized on the viewer is the best grasp.

• 5. Pressing Q will show the rest of the consecutively ranked grasps.

• 6. Once all the grasps have been screened through, the grasp_planner will publish the /grasp_tasks topic.

Warning: If the pointclouds shown on Cloud Viewer is not satisfactory, adjust the passthrough_filter_limits
parameters defined in Grasp Planner Configuration File to suit to your desired environment.

68 Chapter 7. Grasp Planner



EMD, Release alpha

Suction gripper:

[demo_node-1] [INFO] [1622278648.176338963] [GraspScene]: Using Direct Camera Input....
[demo_node-1] [INFO] [1622278648.177783690] [GraspScene]: waiting....
[demo_node-1] [INFO] [1622278652.348536010] [GraspScene]: Camera Point Cloud Received!
[demo_node-1] [INFO] [1622278652.348569074] [GraspScene]: Processing Point Cloud...
[demo_node-1] [INFO] [1622278652.453359019] [GraspScene]: Applying Passthrough filters
[demo_node-1] [INFO] [1622278652.531642625] [GraspScene]: Removing Statistical Outlier
[demo_node-1] [INFO] [1622278653.242787447] [GraspScene]: Downsampling Point Cloud
[demo_node-1] [INFO] [1622278653.257366582] [GraspScene]: Segmenting plane
[demo_node-1] [INFO] [1622278653.289915130] [GraspScene]: Point cloud successfully␣
→˓processed!
[demo_node-1] [INFO] [1622278721.836112062] [GraspScene]: Extracting Objects from point␣
→˓cloud
[demo_node-1] [INFO] [1622278722.761648258] [GraspScene]: Extracted 1 from point cloud
[demo_node-1] [INFO] [1622278722.761778564] [GraspScene]: Loading suction gripper␣
→˓suction_cup
[demo_node-1] [INFO] [1622278722.761936044] [GraspScene]: All End Effectors Loaded
[demo_node-1] [INFO] [1622278723.371410203] [GraspScene]: Grasp planning time for␣
→˓suction_cup 490 [ms]
[demo_node-1] [INFO] [1622278723.371440840] [GraspScene]: 64 Grasp Samples have been␣
→˓generated.

• 1. Proceed to click on the Cloud Viewer window and it will show the pointcloud and bounding box of the
object (Use the mouse scroll to view the pointclouds better).

• 2. Press the Q key within the Cloud Viewer window to view the results of the grasp_samples

• 3. The terminal running grasp_planner_launch.py will show the ranks of all ranked grasps on the object and
the total number of grasps that can be sampled for the object.

• 4. First grasp visualized on the viewer is the best grasp.

• 5. Pressing Q will show the rest of the ranked grasps consecutively.

• 6. Once all the grasps have been screened through, the grasp_planner will publish the /grasp_tasks topic.

Warning: If the pointclouds shown on Cloud Viewer is not satisfactory, adjust the passthrough_filter_limits
parameters defined in Grasp Planner Configuration File to suit to your desired environment.

The pose and orientation of the top ranked grasp will then be published for Grasp Execution Example

7.4 Useful information

Information that you may need for further customization of the package.

7.4. Useful information 69



EMD, Release alpha

7.4.1 Grasp Planner Input Message Types

For a grasp planner, a perception system will provide the necessary inputs required to plan grasps. Currently there are
two main workflows for the grasp planner:

You can choose which workflow you want to use via the configuration file at Grasp Planner General Parameters (EPD)

Direct Camera Input

The EMD Grasp Planner can receive a PointCloud2 message type as input into the system. This is a commonly used
message type for many cameras to send point clouds. The purpose of supporting this Input time is to provide a flexible
option for users to choose the input type based on their needs and hardware specifications

EPD Input

The EMD Grasp Planner also supports output from the easy_perception_deployment

Currently the EMD Grasp Planner supports both Object Localization and Object Tracking outputs from EPD Preci-
sion level 3.

To understand more about the output messages from EPD, do visit the EPD documentation

Which EMD Workflow to choose?

1. Do you need to pick up all the objects in the area, or only specific ones/in a specific order?

All the objects in the area: Direct Camera Workflow

For the Direct Camera Workflow, as objects are determined through pointcloud processing rather than using deep
learning methods of identification, even objects that may be typically hard for deep learning methods to detect can be
detected through raw point clouds. As long as the camera can generate the point cloud, grasps can be planned for that
object.

70 Chapter 7. Grasp Planner

http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html/
https://github.com/ros-industrial/easy_perception_deployment/
https://easy-perception-deployment.readthedocs.io/en/latest/


EMD, Release alpha

Specific Objects/ Specific Order: EPD Workflow

For the EPD workflow, the grasp area is first processed with a deep learning model, thus Object identity of each object
as well as the location is known, thus users can determine which object should be picked, or which object should be
picked first.

Note: Currently, EMD does not allow object prioritization as of now, but the EPD workflow is definitely the workflow
required for this feature.

2. Preparation time before pipeline execution

Less time required: Direct Camera Workflow

For the Direct Camera Workflow, Zero training is needed, as no deep learning components are used. Thus no datasets
of the objects is needed before running the whole pipeline. The only preprocessing step required is writing the config-
uration yaml file for the grasp planner: Grasp Planner Configuration File

More time required: EPD Workflow

As there is a deep learning component for the EPD workflow, labelled datasets for grasping objects is required to train
the perception system, which may take some time to prepare especially if the user requires idenfication of larger number
of objects.

3. Hardware requirements

Lower hardware requriements: Direct Camera Workflow

Without the need for Deep learning, the pick and place pipeline can generally run relatively well with CPU, and can be
enhanced with GPU usage,

Greater hardware requriements: EPD Workflow

Due to the higher hardware limitations for deploying of deep learning models, hardware requirements will be higher
for the EPD workflow. Check the easy_perception_deployment documentation for a more comprehensive hardware
requirement specifications.

Which EMD Workflow to choose (TLDR)?

In summary, at a quick glance this would be how you could choose your workflow for your use case.

Requirements EPD Camera
Picking requirements: Specific objects/order All Objects/ No Order
Preparation time: Slower Faster
Hardware requirements: Higher Lower

7.4. Useful information 71

https://easy-perception-deployment.readthedocs.io/en/latest/


EMD, Release alpha

7.4.2 Grasp Planner Output Message Types

This section provides an understanding of the output from the EMD Grasp Planner. The output from the planner is
typically provided to the Grasp Execution Component of EMD, but you can also provide your own grasp execution
solutions that takes in such messages.

The EMD Grasp Planner consists of a ROS2 client that submits a request of the list of objects to be picked and how to
pick them.

Service Name : grasp_requests

GraspRequest.srv

• Service representing the entire pick and place operation. Contains a list of items (GraspTargets) to be grasped in
the scene

Request name Field Type Explanation
grasp_targets GraspTarget[] Array of Grasp Targets (Refer below to GraspTarget message type)

Result name Field Type Explanation
success bool Indicates successful run of triggered service
message string Any other useful information from Grasp Execution

GraspTarget.msg

• Represents a single object to be picked. Contains a list of end effector grasp plans (GraspMethods)

Message
name

Field Type Explanation

target_type string Object ID. Object Names will be used if using EPD Workflow
target_pose geome-

try_msgs/PoseStamped
Position and Orientation of target Object

target_shape shape_msgs/SolidPrimitive Shape of target object (Used to create collision objects for path
planning)

grasp_methods GraspMethod[] Array of Grasp Targets (Refer below to GraspMethod message
type)

GraspMethod.msg

• Represents a Single end effector option. Contains a list grasp poses for that gripper, sorted by ranks

Message name Field Type Explanation
ee_id string Name of End effector
grasp_poses geometry_msgs/PoseStamped[] Array of grasp poses
grasp_ranks float32[] Array of grasp ranks
grasp_markers visualization_msgs/Marker[] Array of markers representing grasp samples

72 Chapter 7. Grasp Planner



EMD, Release alpha

7.5 Acknowledgements

Initial inspiration for grasp planning algorithim was provided by the following paper, and have been repurposed to
support multiple fingers as well as suction cup arrays

Fast Geometry-based Computation of Grasping Points on Three-dimensional Point Clouds

7.5. Acknowledgements 73

https://www.researchgate.net/publication/331358070_Fast_Geometry-based_Computation_of_Grasping_Points_on_Three-dimensional_Point_Clouds


EMD, Release alpha

74 Chapter 7. Grasp Planner



CHAPTER

EIGHT

GRASP EXECUTION

8.1 Overview

The Easy Manipulation Deployment Grasp Execution package was developed to provide a robust path planning process
to navigate robot to the taget location for grasping. The package serves as a grasp execution simulator using Moveit2
path planners and the results from the Grasp Planner.

Note: It is recommended that you use scene packages generated by the Workcell Builder. If you are using a robot, make
sure you have the moveit config folder (check out Workcell Initialization for more information about the moveit_config
folder)

8.1.1 Benefits of EMD Grasp Execution

1. Seamless intergration with EMD Grasp Planner

The EMD Grasp Execution package communicates with the Grasp Planner package through the subscription to a single
ROS2 topic with the GraspTask.msg type. Details of the GraspTask Message can be found here: Grasp Planner Output
Message Types

2. Dynamic Safety Capabilities

In real life use cases, collaborative robots often operate closely with human operators or reside in an ever-changing
environment. There is thus a need for the robot to be equipped with the dynamic safety capability, to detect possible
collision during its trajectory execution and avoid these occurring obstacles.

Grasp Execution provides users with a vision based dynamic collision avoidance capability using Octomaps. When a
collision has been deemed to occur in the trajectory of the robot, the dynamic safety module will be triggered. This
would either stop the robot to avoid collision, or call for the dynamic replanning of its trajectory given the new collision
objects in the scene.

8.2 Package configuration

Before running the grasp execution package, make sure that you have a scene package in the workcell/src/scenes/
folder.

75



EMD, Release alpha

8.2.1 Launch file

Open the grasp_execution.launch.py file in /workcell/src/easy_manipulation_deployment/
grasp_execution/example/launch/ and change the parameters accordingly.

scene_pkg

The name of your scene package

Example:

scene_pkg = 'ur5_2f_test'

base_link

The base link of the robot connected to the table surface

Example:

robot_base_link = 'base_link'

8.2.2 grasp_execution_node.cpp

Open the demo_node.cpp file in /workcell/src/easy_manipulation_deployment/grasp_execution/
example/src/ and change the parameters accordingly.

static const char PLANNING_GROUP[] = "manipulator";

static const char EE_LINK[] = "ee_palm";

static const float CLEARANCE = 0.1;

static const char GRASP_TASK_TOPIC[] = "grasp_tasks";

PLANNING_GROUP

Robot group state that is declared in the srdf. for example, in the file ur5_moveit_config/config/ur5.srdf.
xacro:

<!--GROUPS: Representation of a set of joints and links. This can be useful for␣
→˓specifying DOF to plan for, defining arms, end effectors, etc-->
<group name="manipulator">

<chain base_link="base_link" tip_link="ee_link" />
</group>

the planning_group is then manipulator

EE_LINK

Tip link of end effector

CLEARANCE

Distance above the object that the end effector would plan to before moving down to pick the object up

GRASP_TASK_TOPIC

ROS2 topic from the Grasp Planning component that will output the GraspTask message

76 Chapter 8. Grasp Execution



EMD, Release alpha

8.2.3 Addidional configurations

Other configurations that can be customized for grasp execution

Grasp Execution Configuration Files

Grasp Execution has many features and capabilities that can be turned on and off, and customized to the your liking.
This is done in the configuration files, that are typically stored in the config folder of your package. The YAML format
is used for this file for better understanding and readability.

Below lists the configuration files in the package that change different parameters in the grasp execution pipeline.

• Changing the start positions

• Changing the fake object published

• Changing the grasp execution parameters

• Changing the dynamic safety execution parameters

• Changing the workcell configurations

Changing the start positions

To change the home state, edit the values of each joint in the file grasp_execution/example/config/
start_positions.yaml:

initial_positions:
shoulder_pan_joint: 1.57
shoulder_lift_joint: -2.35
elbow_joint: 1.83
wrist_1_joint: -1.03
wrist_2_joint: -1.57
wrist_3_joint: 0.0

Changing the fake object published

To change the location and dimensions of the fake object published, edit following parameters in the file
grasp_execution/example/config/fake_grasp_pose_publisher.yaml:

fake_grasp_pose_publisher:
ros__parameters:
interface: service
frame_id: camera_frame
ee_id: robotiq_2f
grasp_pose: [0.0126, 0.0322, 0.442,

0.0, 0.0, 0.9997, 0.0250]

object_pose: [0.0128, 0.0330, 0.443,
0.0, 0.0, 0.9997, 0.0250]

object_dimensions: [0.087, 0.167, 0.023]

delay: 1.5

8.2. Package configuration 77



EMD, Release alpha

Name Type Description
frame_id String Base frame
grasp_pose double array Location that the robot will plan to
object_pose double array Location that the object will spawn at
object_dimensions double array Dimensions of the object (x,y,z)
delay double

Changing the grasp execution parameters

To change the configuration of the default grasp execution, edit following parameters in the file grasp_execution/
example/config/grasp_execution.yaml:

grasp_execution_node:
ros__parameters:
planning_scene_monitor_options:
name: "planning_scene_monitor"
robot_description: "robot_description"
joint_state_topic: "/joint_states"
attached_collision_object_topic: "/moveit_cpp/planning_scene_monitor"
publish_planning_scene_topic: "/moveit_cpp/publish_planning_scene"
monitored_planning_scene_topic: "/moveit_cpp/monitored_planning_scene"
wait_for_initial_state_timeout: 10.0

planning_pipelines:
#namespace: "moveit_cpp" # optional, default is ~
pipeline_names: ["ompl"]

plan_request_params:
planning_attempts: 1
planning_time: 0.5
planning_pipeline: ompl
max_velocity_scaling_factor: 1.0
max_acceleration_scaling_factor: 1.0

Table 1: planning_scene_monitor_options
Name Type Description
name string
robot_description string
joint_state_topic string
at-
tached_collision_object_topic

string

pub-
lish_planning_scene_topic

string

moni-
tored_planning_scene_topic

string

wait_for_initial_state_timeoutdouble

Table 2: planning_pipelines
Name Type Description
pipeline_names string array Planning pipelines to be used (as of now only ompl is supported)

78 Chapter 8. Grasp Execution



EMD, Release alpha

Table 3: plan_request_params
Name Type Description
planning_attempts int Number of planning attempts
planning_pipeline string planning pipeline used
max_velocity_scaling_factordouble Maximum velocity scale
max_acceleration_scaling_factordouble Maximum acceleration scale

Changing the dynamic safety execution parameters

To change the configuration of the grasp execution with dynamic safety, edit following parameters in the file
grasp_execution/example/config/dynamic_safety_demo.yaml:

dynamic_safety_demo_node:
ros__parameters:
planning_scene_monitor_options:
name: "planning_scene_monitor"
robot_description: "robot_description"
joint_state_topic: "/joint_states"
attached_collision_object_topic: "/moveit_cpp/planning_scene_monitor"
publish_planning_scene_topic: "/moveit_cpp/publish_planning_scene"
monitored_planning_scene_topic: "/moveit_cpp/monitored_planning_scene"
wait_for_initial_state_timeout: 10.0

planning_pipelines:
#namespace: "moveit_cpp" # optional, default is ~
pipeline_names: ["ompl"]

plan_request_params:
planning_attempts: 1
planning_time: 0.5
planning_pipeline: ompl
max_velocity_scaling_factor: 1.0
max_acceleration_scaling_factor: 1.0

# Load octomap
load_octomap: true

# Dynamic safety parameters
rate: 20
allow_replan: true
visualize: true

safety_zone:
manual: true
unit_type: second
collision_checking_deadline: 0.05
slow_down_time: 0.2
replan_deadline: 1.2
look_ahead_time: 1.65

collision_checker:
(continues on next page)

8.2. Package configuration 79



EMD, Release alpha

(continued from previous page)

distance: false
continuous: false
step: 0.1
thread_count: 8
realtime: false

next_point_publisher:
command_out_type: "trajectory_msgs/JointTrajectory"
publish_joint_position: true
publish_joint_velocity: false
publish_joint_effort: false

replanner:
planner_name: ompl

visualizer:
publish_frequency: 10
step: 0.1
topic: "/dynamic_safety/displayed_state"

The first half of the parameters are the same as described in grasp_execution.yaml

Name Type Description
load_octomap bool Load the octomap

Name Type Description
rate double
allow_replan bool Replan if collision is detected. If set to false the robot will simply stop

to avoid collision
visualize bool

Table 4: safety_zone
Name Type Description
manual bool
unit_type string
colli-
sion_checking_deadline

double

slow_down_time double
replan_deadline double
look_ahead_time double

Table 5: collision_checker
Name Type Description
distance bool
continuous bool
step double
thread_count int
realtime bool

80 Chapter 8. Grasp Execution



EMD, Release alpha

Table 6: next_point_publisher
Name Type Description
command_out_type string
publish_joint_position bool
publish_joint_velocity bool
publish_joint_effort bool

Table 7: replanner
Name Type Description
planner_name string

Table 8: visualizer
Name Type Description
publish_frequency double
step double
topic string

Changing the workcell configurations

To change the configuration of your workcell, edit following parameters in the file grasp_execution/example/
config/dynamic_safety_demo.yaml:

workcell:
- group_name: manipulator
executors:
default:
plugin: grasp_execution/DefaultExecutor

ds_async:
plugin: grasp_execution/DynamicSafetyAsyncExecutor
controller: ur5_arm_controller

end_effectors:
robotiq_2f0:
brand: robotiq_2f
link: ee_palm
clearance: 0.1
driver:
plugin: grasp_execution/DummyGripperDriver
controller: ""

Name Type Description
group_name string
end_effectors.robotiq_2f0.linkstring Tip link of end effector
end_effectors.robotiq_2f0.clearancedouble Distance above the object that the end effector would plan to before

moving down to pick the object up

8.2. Package configuration 81



EMD, Release alpha

8.3 Running grasp execution

ros2 launch grasp_execution grasp_execution.launch.py

You should then see RViz launch with the initial workcell scene, where the robot arm is at its home state.

Note: Ensure that on your terminal, the ROS2 distribution is sourced, Moveit2 is sourced, and the workspace is built
and sourced as well.

8.3.1 Publishing a Fake Task

ros2 launch grasp_execution fake_task_publisher.launch.xml

This publishes an object for the robot to conduct a pick-and-place operation. The location and dimensions of the object
can be configured in grasp_execution/example/config/fake_grasp_pose_publisher.yaml as described in
the configuration page.

82 Chapter 8. Grasp Execution



CHAPTER

NINE

STEP-BY-STEP TUTORIALS

This section presents a highly detailed end to end example of a pick and place manipulation pipeline using the
easy_manipulation_deployment package. If you want general information about the packages, you can look at the
other sections of the documentation. It is recommended, if you follow this tutorial, to follow it throughout to
reduce any errors stemming from partial actions.

9.1 Workcell Builder Example

In this example we will be creating a simple robotic workcell using the UR5 and the Robotiq-2F gripper. The ex-
pected scene will be as shown. (Note that the robot is currently not in a home pose because the grasp execution node
has not been initialized with this visualization) In the package we include the UR and Robotiq description and
moveit_config folders, but in this tutorial we will show you how to do it from scratch

9.1.1 Before running the GUI

The following instructions provides an example of how you can incorporate new robots and end effector ROS1
packages into this package. There are currently a few robots and end-effectors included in the package, so if you
do not need to add any more of these packages, skip forward to : Starting the Workcell Builder

Downloading Robot and End effector resources

Assuming that you have followed the Download Instructions and have successfully installed the workcell
builder, remove all folders in the workcell_ws/src/assets/robots , workcell_ws/src/assets/end_effectors , and work-
cell_ws/src/assets/environment_objects folders.

Your resulting ROS2 workspace should look like this

|--workcell_ws
___|--src
______|-- ....other folders
______|--scenes
______|--assets
_________|--robots
_________|--end_effectors
_________|--environment_objects

Universal Robot

Next we will get the ur_description and ur5_moveit config folders from the ROS-Industrial Universal Robots repository
. For this example, we can use the kinetic-devel branch

83

https://github.com/ros-industrial/universal_robot/tree/kinetic-devel


EMD, Release alpha

Clone the repository in the assets/robots folder. For this example we only require the ur_description and
ur5_moveit_config folders, thus we remove the other folders for now.

Robotiq End Effector

Next we will get the robotiq_85_description and robotiq_85_moveit_config folders from the Robotiq gripper repository

Clone the repository in the assets/robots folder. For this example we only require the robotiq_85_description
and robotiq_85_moveit_config folders, thus we remove the other folders for now.

Your workspace should look like this.

|--workcell_ws
___|--src
______|-- ....other folders
______|--scenes
______|--assets
_________|--robots
____________|--universal_robot
_______________|--ur5_moveit_config
_______________|--ur_description
_________|--end_effectors
____________|--robotiq_85_gripper
_______________|--robotiq_85_description
_______________|--robotiq_85_moveit_config
_________|--environment_objects

Edit CMakelists.txt and package.xml

As this example will be run on ROS2 Foxy, we will need to make some changes to the CMakelists and package.xml

Universal Robot

In the /assets/robots/ur_description/CMakeLists.txt, replace the contents with the following:

cmake_minimum_required(VERSION 3.10.2)
project(ur_description)
find_package(ament_cmake REQUIRED)

install(DIRECTORY meshes DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY urdf DESTINATION "share/${PROJECT_NAME}")
ament_package()

In the /assets/robots/ur_description/package.xml, replace the contents with the following:

<?xml version="1.0"?>
<package format="3">
<name>ur_description</name>
<version>1.2.7</version>
<description>

URDF description for Universal UR5/10 robot arms
</description>

<author>Wim Meeussen</author>
<author>Kelsey Hawkins</author>
<author>Mathias Ludtke</author>

(continues on next page)

84 Chapter 9. Step-By-Step Tutorials

https://github.com/StanleyInnovation/robotiq_85_gripper


EMD, Release alpha

(continued from previous page)

<author>Felix Messmer</author>
<maintainer email="g.a.vanderhoorn@tudelft.nl">G.A. vd. Hoorn</maintainer>
<maintainer email="miguel.prada@tecnalia.com">Miguel Prada Sarasola</maintainer>
<maintainer email="nhg@ipa.fhg.de">Nadia Hammoudeh Garcia</maintainer>

<license>BSD</license>

<url type="website">http://ros.org/wiki/ur_description</url>

<buildtool_depend>ament_cmake</buildtool_depend>

<exec_depend>joint_state_publisher</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>
<exec_depend>rviz</exec_depend>
<exec_depend>urdf</exec_depend>
<exec_depend>xacro</exec_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

In the /assets/robots/ur5_moveit_config/CMakeLists.txt, replace the contents with the following:

cmake_minimum_required(VERSION 3.10.2)
project(ur5_moveit_config)
find_package(ament_cmake REQUIRED)

install(DIRECTORY config DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY launch DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY tests DESTINATION "share/${PROJECT_NAME}")
ament_package()

In the /assets/robots/ur5_moveit_config/package.xml, replace the contents with the following:

<?xml version="1.0"?>
<package format="3">
<name>ur5_moveit_config</name>
<version>1.2.7</version>
<description>

An automatically generated package with all the configuration and launch files for␣
→˓using the ur5 with the MoveIt Motion Planning Framework
</description>
<author>Felix Messmer</author>
<maintainer email="g.a.vanderhoorn@tudelft.nl">G.A. vd. Hoorn</maintainer>
<maintainer email="miguel.prada@tecnalia.com">Miguel Prada Sarasola</maintainer>
<maintainer email="nhg@ipa.fhg.de">Nadia Hammoudeh Garcia</maintainer>

<license>BSD</license>

<url type="website">http://moveit.ros.org/</url>
(continues on next page)

9.1. Workcell Builder Example 85



EMD, Release alpha

(continued from previous page)

<url type="bugtracker">https://github.com/ros-planning/moveit_setup_assistant/issues</
→˓url>
<url type="repository">https://github.com/ros-planning/moveit_setup_assistant</url>

<buildtool_depend>ament_cmake</buildtool_depend>

<exec_depend>joint_state_publisher</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>
<exec_depend>xacro</exec_depend>
<depend>ur_description</depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

Robotiq End Effector

In the /assets/end_effectors/robotiq_85_gripper/robotiq_85_description/CMakeLists.txt, replace
the contents with the following:

cmake_minimum_required(VERSION 3.10.2)
project(robotiq_85_description)
find_package(ament_cmake REQUIRED)

install(DIRECTORY meshes DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY urdf DESTINATION "share/${PROJECT_NAME}")
ament_package()

In the /assets/end_effectors/robotiq_85_gripper/robotiq_85_description/package.xml, replace the
contents with the following:

<?xml version="1.0"?>
<package format="3">
<name>robotiq_85_description</name>
<version>0.6.4</version>
<description>Stanley Innovation Robotiq 85 Visual Models</description>
<maintainer email="dev@stanleyinnovation.com">Patrick Hussey</maintainer>
<author>Patrick Hussey</author>

<license>BSD</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<exec_depend>joint_state_publisher</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

In the /assets/end_effectors/robotiq_85_gripper/robotiq_85_moveit_config/CMakeLists.txt, re-
place the contents with the following:

86 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

cmake_minimum_required(VERSION 3.10.2)
project(robotiq_85_moveit_config)
find_package(ament_cmake REQUIRED)

install(DIRECTORY config DESTINATION "share/${PROJECT_NAME}")
install(DIRECTORY launch DESTINATION "share/${PROJECT_NAME}")
ament_package()

In the /assets/end_effectors/robotiq_85_moveit_config/package.xml, replace the contents with the fol-
lowing:

<package>
<name>robotiq_85_moveit_config</name>
<version>0.2.0</version>
<description>

An automatically generated package with all the configuration and launch files for␣
→˓using the robotiq_85_gripper with the MoveIt Motion Planning Framework
</description>
<author email="assistant@moveit.ros.org">MoveIt Setup Assistant</author>
<maintainer email="assistant@moveit.ros.org">MoveIt Setup Assistant</maintainer>

<license>BSD</license>

<url type="website">http://moveit.ros.org/</url>
<url type="bugtracker">https://github.com/ros-planning/moveit_setup_assistant/issues</

→˓url>
<url type="repository">https://github.com/ros-planning/moveit_setup_assistant</url>

<buildtool_depend>ament_cmake</buildtool_depend>

<exec_depend>joint_state_publisher</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>
<exec_depend>xacro</exec_depend>
<build_depend>robotiq_85_description</build_depend>
<exec_depend>robotiq_85_description</exec_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

Xacro-ize the SRDFs

As this workcell builder aims to create links between the manipulator and end effector, the semantic descriptions need
to be accessible as macros.

In the /assets/end_effectors/robotiq_85_gripper/robotiq_85_moveit_config/config folder, make a
copy of robotiq_85_gripper.srdf and rename it robotiq_85_gripper.srdf.xacro . in this file, add
the xacro tags <xacro:macro name="robotiq_85"> and :code:` </xacro:macro>` to the start and end of
the file, as well as adding the XML NameSpace <robot xmlns:xacro="http://www.ros.org/wiki/xacro"
name="robotiq_85_gripper">

9.1. Workcell Builder Example 87



EMD, Release alpha

Your robotiq_85_gripper.srdf.xacro file should be as shown

<?xml version="1.0" ?>
<!--This does not replace URDF, and is not an extension of URDF.

This is a format for representing semantic information about the robot structure.
A URDF file must exist for this robot as well, where the joints and the links that␣

→˓are referenced are defined
-->
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="robotiq_85_gripper">
<xacro:macro name="robotiq_85_gripper">
...
...
...

<disable_collisions link1="gripper_root_link" link2="robotiq_coupler_link" reason=
→˓"Adjacent" />
</xacro:macro>
</robot>

In the /assets/end_effectors/robotiq_85_gripper/ur5_moveit_config/config folder, make a copy of
ur5.srdf and rename it ur5.srdf.xacro . in this file, add the xacro tags <xacro:macro name="ur5">
and :code:` </xacro:macro>` to the start and end of the file, as well as adding the XML NameSpace <robot
xmlns:xacro="http://www.ros.org/wiki/xacro" name="ur5">

Your ur5.srdf.xacro file should be as shown

<?xml version="1.0" ?>
<!--This does not replace URDF, and is not an extension of URDF.

This is a format for representing semantic information about the robot structure.
A URDF file must exist for this robot as well, where the joints and the links that␣

→˓are referenced are defined
-->
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="ur5">
<xacro:macro name="ur5">
...
...
...

<disable_collisions link1="wrist_2_link" link2="wrist_3_link" reason="Adjacent" />
</xacro:macro>
</robot>

Next step: Starting the Workcell Builder

9.1.2 Starting the Workcell Builder

In the working directory /workcell_ws/ (Important!), run the workcell builder

workcell_builder

88 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Set the ROS version and Distro to ROS2 Foxy. Next, click Choose workspace location and select the filepath to
workcell_ws . You should see a green confirmation message that the workcell is loaded.

Click Next. you will then see the scene selection screen. Click on New Scene.

9.1. Workcell Builder Example 89



EMD, Release alpha

90 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Next step: Adding A Manipulator

9.1. Workcell Builder Example 91



EMD, Release alpha

9.1.3 Adding A Manipulator

Before you can add an end effector you need to first connect a robot to the world. Check the Include Robot and click
Add Robot

In the Robot Brand field , choose Universal Robot

In the Robot Model field, choose ur5

In the Robot Base Link field, choose base_link

In the Robot End Effector Link field, choose ee_link

Since we want the robot to be at the origin point of the world, we can leave the origin field unchecked. Your final
window should look like this:

After clicking Ok, you returning to the scene creation window, there should be a confirmation that the robot is loaded
and the option to include an end effector

Next step: Adding an end effector

92 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.1.4 Adding an end effector

In the scene creation window, check the Include End Effector and click Add End Effector

In the End Effector Brand field , choose robotiq_85_gripper

In the End Effector Model field, choose robotiq_85

In the End Effector Link field, choose gripper_base_link

In the End Effector Type field, choose finger

In the Fingers field, choose 2

Since we want the end effector to be right at the point of the robot’s end effector link, we can leave the origin field
unchecked. If you want a certain offset for your end effector with respect to the robot, you can add an origin component
with your required values. Your final window should look like this:

click Ok , and the scene creation window will show an end effector loaded confirmation as well.

Next step: Adding an Object

9.1. Workcell Builder Example 93



EMD, Release alpha

9.1.5 Adding an Object

This portion of the tutorial is to provide a guide on how to add a new object using the STL files. if you are
planning on just using the existing table package created for you, skip to: Loading an Object

Next, we will create an Environment Object, the table. Click Add Object

In the Object Name, give your object a name, i.e table.

Click on Add New Link.

Create visual component of link

Give your link a name, e.g “table”. In order to visualize the object, you need to have a link with a visual component.
Check Enable Viusal and click Create Visual

94 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

For this example, we will use an stl file. Select Using STL and click Load File . Select the location of your stl file.
For this example, the table.stl file will be located at /workcell_ws/src/easy_manipulation_deployment/
workcell_builder/examples/resources/ . The stl file is currently too big, so we shall resize it by a factor of
0.001 on all axes (X, Y, Z)

The table in this example will also be at the origin of the workcell world, so we will leave the origin unchecked.

9.1. Workcell Builder Example 95



EMD, Release alpha

The workcell table we have is slightly grey. Uncheck the Include Material , toggle to Using color and enter the
following numbers into the RGBA fields. Name the material “aluminum”.

Your final visual_link window should look like this:

96 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Click ok.

Create Collision component of link

Next, if you want this table object to be accounted for as a collision object, you need to add a collision component.
Check Enable Collision and click Create Collision

9.1. Workcell Builder Example 97



EMD, Release alpha

The steps to filling up this window is identical to adding visual component, where you add in the geometry. Similar
to the visual component, you want your collision component to be in the shape of the table as well, hence we use the
same stl as before.

Your final collision_link window should look like this:

98 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

For this example, we do not require an inertial component so we will skip that option. Your final new link window
should look like the following

9.1. Workcell Builder Example 99



EMD, Release alpha

Click Ok. Your link should now be displayed in the link window.

As this is a relatively simple environment object, there is only one link needed, and hence no internal joints need to be
declared.

100 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Set external joint attributes

In a scene, all objects need to be connected by at least one link on the object (as the child link) to another link (parent
link) via an external joint. The only exception is world , which is an independant link that does not need to be connected
to any object. In other words, it is the first parent link of the entire scene tree.

For our table, we will first choose the child_link that we want for the external joint, as well as the external joint type.
For now, since the table only has one link, we select the link table . Set the external joint type to be fixed as well.

Make sure to name your object as well. We can simply name it table

Your final Add New Environmental Object window should look like this:

Click confirm

Next step: Adding External joints for Objects

9.1.6 Loading an Object

This portion of the tutorial is to provide a guide on how to load the existing table object package that was
previously generated by the workcell builder. If you have already created the table object in the same workcell
builder session, skip this page and move on to: Adding External joints for Objects

In the main scene window, click on the load object button

9.1. Workcell Builder Example 101



EMD, Release alpha

Select the table object package and leave the name as “table”. Click the OK button.

If the object is successfully loaded, your “Environment objects” field should be displayed as shown.

Next step: Adding External joints for Objects

102 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.1.7 Adding External joints for Objects

Linking table to the external world

Awesome! You now have all the objects you require for the scene: A table, a manipulator, and an end effector. While
the end effector and manipulator are automatically attached to the world (The manipulator is connected to world link

9.1. Workcell Builder Example 103



EMD, Release alpha

and the end effector is connected to the manipulator’s ee_link link), the table is currently not connected (As shown
in the parent link and child link columns being empty)

To connect the table, we will create an external joint. Double click the table entry under the Object column (Not
under the custom objects !)

You should then see the add new external joint window pop up as shown below

For now, environmental objects can only be attached to other environmental objects. Since the table is the only
environmental objects in the scene, the only link you can connect to is world. If you have added more environment
objects in scene, they will be displayed here.

For the table, since we want the table to be also connected to the origin of the world, where the base of the manipulator
is located. Hence, we can just leave the origin checkbox unchecked (which defaults to xyz(0,0,0) and rpy(0,0,0)). You
will then also see that the child link and child object are displayed there as well, based on the object name and the
external joint child link you selected during object creation.

click Ok, and in the Create New Scene Window, you should now see the Parent Object and Parent Link
Columns being filled with world . Your table is now successfully connected to the scene!

You are now officially done with creating your scene. Make sure to name your scene and then click OK.

104 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Next step: Generating files and folders

9.1. Workcell Builder Example 105



EMD, Release alpha

9.1.8 Generating files and folders

After creating the scene, you should see the name of your scene in the dropdown menu.

At this point, if you check your directory at /workcell_ws/src/scenes/ , you should see your new_scene package
being generated

106 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

However, while the CMakelists.txt and package.xml files are generated, the rest of the other files are not. We need
to first click on the Generate Yaml file from scenes . If successful, you should see the following message

9.1. Workcell Builder Example 107



EMD, Release alpha

To see what was the yaml that was generated, open the file at /workcell_ws/src/scenes/new_scene/
environment.yaml

108 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Next, we will need to generate the rest of the relevant files and folders for the scenes. Click on Generate files from
yaml In the window. If successful, you will be prompted to exit the gui.

Click exit

Next step: Check if scene is properly generated

9.1.9 Check if scene is properly generated

Next, to check if the scene is properly created, we will try running the package. In /workcell_ws/ ,

source /opt/ros/foxy/setup.bash

cd ~/workcell_ws/src

colcon build

source install/setup.bash

ros2 launch new_scene demo.launch

RViz should be launched, and you should see your workspace in the simulation.

9.1. Workcell Builder Example 109



EMD, Release alpha

Now we have a simulated set up of the scene. However, typically a manipulation system would need some form of
perception system, which will be addresed next: Next step: Adding a camera to the scene

110 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.1.10 Adding a camera to the scene

For manipulation systems with cameras, you would need to have a representation of the camera in the scene. The
current workcell builder version does not support camera addition via the gui, but in this tutorial we will teach you
how to add a camera to the scene.

For this example, we will adding the Intel Realsense D415 depth camera in the scene.

Downloading Camera Description Folder

Note that the default easy_manipulation_deployment package includes the intel realsense camera in the as-
sets/environment/realsense2_description directory, but this portion provides a step by step guide on replicating
it for other cameras. If you are planning to use what was provided, skip to the next step, “Add the camera to the
scene”

In the directory /workcell_ws/src/assets/environment/ , download the realsense repository

git clone https://github.com/IntelRealSense/realsense-ros.git -b foxy

Only keep the realsense2_description folder. Your /workcell_ws/src/assets/environment/ folder should
be as shown:

Next, build your package again to make sure that the realsense package builds correctly.

source /opt/ros/foxy/setup.bash

cd ~/workcell_ws
(continues on next page)

9.1. Workcell Builder Example 111



EMD, Release alpha

(continued from previous page)

colcon build

source install/setup.bash

Add the camera to the scene

Now we shall add the camera to the scene we created previously, new_scene .

Open up the urdf file in /workcell_ws/src/scenes/new_scene/urdf/scene.urdf.xacro and add the following
lines before the </robot> tag:

<xacro:include filename="$(find realsense2_description)/urdf/_d415.urdf.xacro"/>
<xacro:arg name="use_nominal_extrinsics" default="true" />
<xacro:sensor_d415 parent="table_" use_nominal_extrinsics="$(arg use_nominal_

→˓extrinsics)">
<origin xyz="-0.58 0.225 0.65" rpy="3.14159 1.57079506 0"/>

</xacro:sensor_d415>

Now, rebuild the package and launch the demo visualization

source /opt/ros/foxy/setup.bash

cd ~/workcell_ws/src

colcon build

source install/setup.bash

ros2 launch new_scene demo.launch.py

you should see the camera in scene.

112 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Checking camera frame reference

First we need to check which link is the child link when connecting the camera to the xacro. This can be found in
/workcell_ws/src/assets/environment/realsense2_description/urdf/_d415.urdf.xacro

From the URDF we can see that the link that is connected to the external scene is ${name}_bottom_screw_frame.

Next, We will launch RViz to check the orientation of this link.

ros2 launch realsense2_description view_model.launch.py model:=test_d415_camera.urdf.
→˓xacro

9.1. Workcell Builder Example 113



EMD, Release alpha

On the RViz GUI left panel, in order to see the frame, make sure to only check that link, and also increase the Marker
Scale to about 0.5.

For some cameras, the link representing the model may not be in the same orientation as the actual camera frame the
perception system references . This can be shown in RViz,

114 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

This is how we are currently referencing the camera in the scene. However, based off the perception system we are
using (easy_perception_system), the actual camera frame is supposed to be as shown below.

9.1. Workcell Builder Example 115



EMD, Release alpha

To do so, we need to add a link in this orientation in the URDF. In the file /workcell_ws/src/scenes/new_scene/
urdf/scene.urdf.xacro add the following lines under the declaration of the camera object:

<link name="camera_frame" />
<joint name="d415_to_camera" type="fixed">

<parent link="camera_link"/>
<child link="camera_frame"/>
<origin xyz="0 0 0" rpy="1.57079506 0 1.57079506"/>

</joint>

This adds a new frame camera_frame that will be the frame in which the object is detected, and the frame that will be
transformed to the world frame during the grasp execution phase of the pipeline.

Now that we have the main scene set up, we can move on to the grasp planner: grasp_planner_example

9.2 Grasp Execution Example

Currently the grasp execution portion of the package is under heavy development, but for now there is a basic example
to execute the grasp plan.

In the example we will use the perception ROS2 bag as the input.

116 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.2.1 Grasp execution configuration

Grasp execution launch file

First we need to configure the grasp execution launch file. In /workcell_ws/src/
easy_manipulation_deployment/grasp_execution/example/launch/grasp_execution.launch.py ,
make sure you define the correct scene package for the grasp execution, and the correct base link of the robot.

scene_pkg = 'new_scene'
robot_base_link = 'base_link'

Scene URDF File

In /workcell_ws/src/scenes/new_scene/urdf/scene.urdf.xacro, add the following lines before the robot
tag:

<link name="ee_palm" />
<joint name="base_to_palm" type="fixed">

<parent link="tool0"/>
<child link="ee_palm"/>
<origin xyz="0 0 0.09" rpy="0 0 0"/>

</joint>

This link, ee_palm represents the point of contact with respect to the grasp object.

9.2. Grasp Execution Example 117



EMD, Release alpha

Grasp execution node file

In /workcell_ws/src/easy_manipulation_deployment/grasp_execution/example/config/
workcell_context.yaml you can edit the end_effectors.link parameter to reflect the link of the end
effector that will represent the point of contact with respect to the grasp object. In this case, it will be ee_palm.

The link group name for the manipulator can also be defined by the group_name parameter. In this case, it will be
manipulator.

118 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.2.2 Running full pipeline

After making the changes, remember to build the workspace. In /workcell,

colcon build
source install/setup.bash

The next part requires three different terminals.

Terminal 1: Grasp Execution

This terminal runs the manipulation workspace simulation. First, source all relevant repositories. In /workcell,

source /opt/ros/foxy/setup.bash
source ~/moveit2_ws/install/setup.bash
source install/setup.bash

Next, launch the grasp execution component.

ros2 launch grasp_execution grasp_execution_launch.py

You should then see rviz launch and the scene.

9.2. Grasp Execution Example 119



EMD, Release alpha

Terminal 2: Grasp Planner

This terminal runs the grasp_planner. First, source all relevant repositories. In /workcell,

source /opt/ros/foxy/setup.bash
source ~/moveit2_ws/install/setup.bash
source install/setup.bash

Next, launch the grasp planner.

ros2 run grasp_planning grasp_planning_node

You should then see the following

[easy_manipulation_deployment][Grasp Planner] Waiting for topic....

Terminal 3: Perception example rosbag

This terminal runs the perception example. First, source all relevant repositories. In /workcell,

source /opt/ros/foxy/setup.bash
source ~/moveit2_ws/install/setup.bash
source install/setup.bash

Next, run the rosbag

ros2 bag play src/easy_manipulation_deployment/grasp_planner/rosbag/perception_example/
→˓rosbag/rosbag2_2020_09_25-15_54_55_0.db3

You should then see the following

[INFO] [1605754174.300681975] [rosbag2_storage]: Opened database 'src/easy_manipulation_
→˓deployment/grasp_planner/rosbag/perception_example/rosbag/rosbag2_2020_09_25-15_54_55_
→˓0.db3' for READ_ONLY.

Ideally, if all components run in sequence, you should then see the manipulator simulation move in Rviz. The object
will be picked up and placed at a drop off location before going back to the home position.

9.3 Grasp Planner Example

In this part of the tutorial we will reference the scene we have generated in :ref:’workcell_builder_example’

Currently, perception data inputs for the Grasp Planner only works with:

1. Pointcloud2

2. Easy Perception Deployment (EPD)

If you currently do not have a working perception system, you can still test out the package using either the epd_rosbag
or pointcloud_rosbag located in PATH TO ROSBAG folder TO BE WRITTEN

The rosbags are using the stream of a simple tea box as shown below.

120 Chapter 9. Step-By-Step Tutorials

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/PointCloud2.html
https://github.com/ros-industrial/easy_perception_deployment


EMD, Release alpha

Note: Prority is given to Easy Perception Deployment topic if both Pointcloud and Easy Perception Deployment are
running simultaneously.

9.3. Grasp Planner Example 121

https://github.com/ros-industrial/easy_perception_deployment
https://en.wikipedia.org/wiki/Point_cloud
https://github.com/ros-industrial/easy_perception_deployment


EMD, Release alpha

9.3.1 Set up end effector parameters

The current version of Grasp Planner is able support end-effectors for both multiple suction arrays and multiple fingered
grippers.

For the example, we will utilize the 2-Finger gripper in line with the end-Effector used for the scene in Workcell
Builder Example

The configuration files need to be set according to the type of End-effector that is being used. In the configuration
file found in /grasp_planner/example/config/params_2f.yaml, the contents of the .yaml file should be as
followed:

2-Finger gripper

grasp_planning_node:
ros__parameters:
perception_topic: "/camera/pointcloud"
camera_frame: "camera_color_optical_frame"
point_cloud_params:
passthrough_filter_limits_x: [-0.50, 0.50]
passthrough_filter_limits_y: [-0.15, 0.40]
passthrough_filter_limits_z: [0.01, 0.70]
segmentation_max_iterations: 50
segmentation_distance_threshold: 0.01
cluster_tolerance: 0.01
min_cluster_size: 750
cloud_normal_radius: 0.03

end_effectors:
end_effector_names: [robotiq_2f]
robotiq_2f:

type: finger
num_fingers_side_1: 1
num_fingers_side_2: 1
distance_between_fingers_1: 0.0
distance_between_fingers_2: 0.0
finger_thickness: 0.02
gripper_stroke: 0.085
grasp_planning_params:
grasp_plane_dist_limit: 0.007
voxel_size: 0.01
grasp_rank_weight_1: 1.5
grasp_rank_weight_2: 1.0
world_x_angle_threshold: 0.5
world_y_angle_threshold: 0.5
world_z_angle_threshold: 0.25

Tip: For more indepth information on how to configure the .yaml file for your own end-effector. Head on over to
Grasp Planner Configuration File

122 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

9.3.2 Running the Grasp Planner

This part of the example requires 2 terminals. We will be running the epd_rosbag for this example.

In terminal 1: (Grasp Planner Terminal)

source /opt/ros/foxy/setup.bash

source PATH_TO_MOVEIT_WS/install/setup.bash

cd PATH_TO_EMD_WS/

colcon build

source install/setup.bash

ros2 launch grasp_planner grasp_planner_launch.py

The package will then show the following when waiting for the perception topic

[pcl_test_node-1] waiting...

• A blank Cloud Viewer window will pop up

Proceed to run the perception topic

Note: Take note that Grasp Execution should be launched first as the Grasp Planner requires the frame
camera_color_optical_frame to be present. If not the following will be shown on Terminal 1:

[pcl_test_node-1] [INFO] [1617252094.561454528] [pcl_node]: Message Filter dropping␣
→˓message: frame 'camera_color_optical_frame' at time 0.000 for reason 'Unknown'

In terminal 2: (Rosbag/Perception stream Terminal)

Note: This step uses the epd_rosbag as an example, you can provide your own stream of pointcloud/EPD data or use
the camera_rosbag(uses /pointcloud topic), found in the rosbag folder as well.

Tip: More information on acceptable message types can be found in Grasp Planner Output Message Types

epd_rosbag

source /opt/ros/foxy/setup.bash

cd ~/workcell_ws/

source install/setup.bash

(continues on next page)

9.3. Grasp Planner Example 123



EMD, Release alpha

(continued from previous page)

cd PATH_TO_CAMERA/EPD_ROSBAG

ros2 bag play epd_rosbag.db3

Once successfully launched, the output should be as shown below on Terminal 2.

[INFO] [1617251978.247342106] [rosbag2_storage]: Opened database 'epd_rosbag.db3' for␣
→˓READ_ONLY.

9.3.3 Viewing grasping results on Cloud viewer

• 1. Proceed to click on the Cloud Viewer window and it will show the pointcloud and bounding box of the
object (Use the mouse scroll to view the pointclouds better).

• 2. Press the Q key within the Cloud Viewer window to view the results of the grasp_samples

• 3. The terminal running grasp_planner_launch.py will show the ranks of all ranked grasps on the object and
the total number of grasps that can be sampled for the object.

• 4. First grasp visualized on the viewer is the best grasp.

• 5. Pressing Q will show the rest of the consecutively ranked grasps.

• 6. Once all the grasps have been screened through, the grasp_planner will publish the /grasp_tasks topic.

The Cloud Viewer window will then load the frame of the perception input data as shown below:

Pointcloud data

124 Chapter 9. Step-By-Step Tutorials



EMD, Release alpha

Object Bounding Box

9.3. Grasp Planner Example 125



EMD, Release alpha

Grasp visualization

The grasps are ranked based off the quality of their grasps. The pose and orientation of the top ranked grasp will then
be published for Grasp Execution Example

126 Chapter 9. Step-By-Step Tutorials


	Overview
	Manipulation Pipeline
	Workcell Builder
	Grasp Planner
	Grasp Execution


	Frequently Asked Questions
	Workcell Builder
	How many Robots are supported in workcell generation?
	I have my own object_description folders for existing objects that I want to to load into the scene. How do I load it into the Workcell Builder?
	Can I create my own robot and end effector from the Workcell builder?
	How do I visualize the workspace during editing using the GUI

	Grasp Planner
	Can I use my own perception system with this package
	Is it possible to do a side grasp rather than a top down grasp?


	Future Plans
	Workcell Builder
	Loading of custom environment objects
	Multi robot support
	Real Time Visualization of workcell building

	Grasp Planner
	Cross gripper ranking system

	Grasp Execution
	Eye In Hand support


	Common Concepts
	YAML
	URDF
	SRDF
	Moveit_Config Folders
	Description Folders
	Workcell
	Scenes
	Assets
	Robots
	End Effectors
	Environment Objects


	Download Instructions
	Installing a perception package
	Installing complete Easy Manipulation Deployment suite
	Installing Easy Manipulation Deployment dependencies

	Installing only the Workcell Builder
	Installing entire Easy Manipulation Deployment package

	Workcell Builder
	Workcell Initialization
	Folder structure
	Folder Structure for Assets

	Generating Moveit Config packages
	FOR ROS 2

	Uploading Relevant Assets
	Robots
	End Effector
	Environment Objects


	Create A Scene
	Adding a Robot into scene
	Origin
	Robot Base Link
	Robot End Effector Link

	Adding an End Effector into scene
	Origin
	End Effector Link
	End Effector Type

	Adding Objects into scene
	Create an object
	Adding Links
	Adding Visual Component
	Adding Inertial Component
	Adding Collision Component

	Adding Joints
	Inheritance
	Axis

	Origin Explanations


	Complete Scene

	Generate Files and Folders
	Generating yaml files
	Other Files (General)
	Environment Object Packages
	environment.urdf.xacro
	arm_hand.srdf.xacro

	Other Files (ROS1)
	Other Files (ROS2)
	demo.launch.py


	Run workcell demo
	ROS1
	ROS2

	Editing Existing Scene
	Loading YAML file into GUI

	Conventions
	Naming Conventions
	Description folders
	URDF folders
	moveit_config folder



	Grasp Planner
	Overview
	Benefits of EMD Grasp Planner

	Before running the Grasp Planner
	Grasp Planning Methodology
	Grasp planning methodologies
	Multifinger Linear End Effectors
	Grasp Planner Methodology (Finger)
	WIP, Come back soon!

	Suction Cup Array End Effectors
	Grasp Planner Methodology (Suction)
	WIP, Come back soon!



	Grasp Planner Configuration File
	Grasp Planner General Parameters
	Parameter Descriptions
	grasp_output_service
	easy_perception_deployment
	Grasp Planner General Parameters (EPD)
	easy_perception_deployment.epd_enabled
	easy_perception_deployment.tracking_enabled
	easy_perception_deployment.epd_topic
	camera_parameters
	Grasp Planner General Parameters (Camera)
	camera_parameters.point_cloud_topic
	camera_parameters.camera_frame
	point_cloud_params
	Grasp Planner General Parameters (Point Cloud)
	Passthrough Filtering Parameters
	point_cloud_params.passthrough_filter_limits_x
	point_cloud_params.passthrough_filter_limits_y
	point_cloud_params.passthrough_filter_limits_z
	Plane Segmentation Parameters
	point_cloud_params.segmentation_max_iterations
	point_cloud_params.segmentation_distance_threshold
	Object Segmentation Parameters
	point_cloud_params.cluster_tolerance
	point_cloud_params.min_cluster_size
	Normals Estimation Parameters
	point_cloud_params.cloud_normal_radius
	FCL Collision Object Parameters
	point_cloud_params.fcl_voxel_size
	point_cloud_params.octomap_resolution
	end_effectors
	Grasp Planner General Parameters (End Effectors)
	end_effectors.end_effector_names
	visualization_params
	Grasp Planner General Parameters (Visualization)
	visualization_params.point_cloud_visualization


	Grasp Planner Finger Parameters
	Physical Attributes
	Grasp Planner Finger Parameters (Physical Attributes)
	<finger_gripper_name>.type
	<finger_gripper_name>.num_fingers_side_1
	<finger_gripper_name>.num_fingers_side_2
	<finger_gripper_name>.distance_between_fingers_1
	<finger_gripper_name>.distance_between_fingers_2
	<finger_gripper_name>.finger_thickness
	<finger_gripper_name>.gripper_stroke

	Coordinate System Attributes
	Grasp Planner Finger Parameters (Coordinate Systems)
	<finger_gripper_name>.gripper_coordinate_system.grasp_stroke_direction
	<finger_gripper_name>.gripper_coordinate_system.grasp_stroke_normal_direction
	<finger_gripper_name>.gripper_coordinate_system.grasp_approach_direction

	Grasp Planning Attributes
	Grasp Planner Finger Parameters (Planning)
	<finger_gripper_name>.grasp_planning_params.grasp_plane_dist_limit
	<finger_gripper_name>.grasp_planning_params.voxel_size
	<finger_gripper_name>.grasp_planning_params.grasp_rank_weight_1
	<finger_gripper_name>.grasp_planning_params.grasp_rank_weight_2
	<finger_gripper_name>.grasp_planning_params.world_x_angle_threshold
	<finger_gripper_name>.grasp_planning_params.world_y_angle_threshold
	<finger_gripper_name>.grasp_planning_params.world_z_angle_threshold


	Grasp Planner Suction Parameters
	Physical Attributes
	Grasp Planner Suction Parameters (Physical Attributes)
	<suction_gripper_name>.type
	<suction_gripper_name>.num_cups_length
	<suction_gripper_name>.num_cups_breadth
	<suction_gripper_name>.dist_between_cups_length
	<suction_gripper_name>.dist_between_cups_breadth
	<suction_gripper_name>.cup_radius
	<suction_gripper_name>.cup_height

	Coordinate System Attributes
	Grasp Planner Suction Parameters (Coordinate Systems)
	<suction_gripper_name>.gripper_coordinate_system.length_direction
	<suction_gripper_name>.gripper_coordinate_system.breadth_direction
	<suction_gripper_name>.gripper_coordinate_system.grasp_approach_direction

	Grasp Planning Attributes
	Grasp Planner Suction Parameters (Planning)
	Grasp sample Generation
	<suction_gripper_name>.grasp_planning_params.num_sample_along_axis
	<suction_gripper_name>.grasp_planning_params.search_resolution
	<suction_gripper_name>.grasp_planning_params.search_angle_resolution
	Grasp Planning Weights
	<suction_gripper_name>.grasp_planning_params.weights.curvature
	<suction_gripper_name>.grasp_planning_params.weights.grasp_distance_to_center
	<suction_gripper_name>.grasp_planning_params.weights.number_contact_points


	Sample configuration yaml file


	Running the Grasp Planner
	Running the Grasp Planner
	Example Grasp Planning Output:


	Useful information
	Grasp Planner Input Message Types
	Direct Camera Input
	EPD Input
	Which EMD Workflow to choose?
	1. Do you need to pick up all the objects in the area, or only specific ones/in a specific order?
	All the objects in the area: Direct Camera Workflow
	Specific Objects/ Specific Order: EPD Workflow

	2. Preparation time before pipeline execution
	Less time required: Direct Camera Workflow
	More time required: EPD Workflow

	3. Hardware requirements
	Lower hardware requriements: Direct Camera Workflow
	Greater hardware requriements: EPD Workflow


	Which EMD Workflow to choose (TLDR)?

	Grasp Planner Output Message Types
	GraspRequest.srv
	GraspTarget.msg
	GraspMethod.msg


	Acknowledgements

	Grasp Execution
	Overview
	Benefits of EMD Grasp Execution

	Package configuration
	Launch file
	grasp_execution_node.cpp
	Addidional configurations
	Grasp Execution Configuration Files
	Changing the start positions
	Changing the fake object published
	Changing the grasp execution parameters
	Changing the dynamic safety execution parameters
	Changing the workcell configurations



	Running grasp execution
	Publishing a Fake Task


	Step-By-Step Tutorials
	Workcell Builder Example
	Before running the GUI
	Downloading Robot and End effector resources
	Edit CMakelists.txt and package.xml
	Xacro-ize the SRDFs

	Starting the Workcell Builder
	Adding A Manipulator
	Adding an end effector
	Adding an Object
	Create visual component of link
	Create Collision component of link
	Set external joint attributes

	Loading an Object
	Adding External joints for Objects
	Linking table to the external world

	Generating files and folders
	Check if scene is properly generated
	Adding a camera to the scene
	Downloading Camera Description Folder
	Add the camera to the scene
	Checking camera frame reference


	Grasp Execution Example
	Grasp execution configuration
	Grasp execution launch file
	Scene URDF File
	Grasp execution node file

	Running full pipeline
	Terminal 1: Grasp Execution
	Terminal 2: Grasp Planner
	Terminal 3: Perception example rosbag


	Grasp Planner Example
	Set up end effector parameters
	2-Finger gripper

	Running the Grasp Planner
	Viewing grasping results on Cloud viewer



